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SUPPORTING METHODS 

Statistical analysis summary 

Analyses to assess prediction of vocal development. Multiple linear regression (MLR) was the primary 

method used with the automated acoustic analysis to model vocal development. In the first step, SVI/SCU ratios 

for each of the 12 acoustic parameters for each day-long recording were regressed linearly against age in 

months at the time of each of their recordings for the typically developing children. The result was a normative 

model of vocal development as predicted by the acoustic parameters through entirely automated means (with no 

human intervention). In the second step, the SVI/SCU ratios for each of the recordings for the language delayed 

and autism samples were plotted on the basis of the normative MLR model, thus providing a comparative view 

of vocal development in the three groups as predicted by the automated acoustic parameter analysis for typically 

developing children (main text Figure 2b-g).  

Analyses to model differentiation of groups. Classification predictions for children and recordings as 

typically developing, autistic or language delayed on the basis of the automated acoustic analysis were 

accomplished by a linear model, the parameters of which were estimated using linear discriminant analysis 

(LDA) and linear logistic regression (LLR) in separate analysis runs. Our primary method was based on the 

holdout method called leave-one-out-cross-validation (LOOCV) over the entire data set of 1486 recordings 

(802 typical, 333 language delayed,  and 351 autistic) and 232 children (106 typical, 49 language delayed, and 

77 autistic) with class predictions made by thresholding the output of the model on a held out data point (all the 

data from recordings of a single child) on each pass. This provided a jackknifed estimate of the prediction error 

in the standard way.  

The use of a holdout method is critical in statistical modeling of this sort, because without it one runs 

the risk that findings will not generalize well to any new sample. LOOCV is a holdout method in which the 

statistical model is trained as many times as there are data points, in this case as many times as there were 

children in the dataset. In other words, LOOCV is the holdout method where the size of the heldout sample is 

one . To exemplify from the current study, in the first modeling pass of LOOCV, data on recordings from one 

child were held out while the model was trained on all other children’s data. Then the left-out child’s posterior 

probability (PP) was determined and plotted based on that first model. In the second modeling pass, a second 

child was randomly selected and the process was repeated, with the second child’s PP being determined and 

plotted based on the second model. The process was repeated to determine PPs for all children, and in each case 

the child’s outcome was based on a model where his/her own vocal characteristics had not been involved in the 

development of that model. This method limits the likelihood that idiosyncrasies of any individual child can 

significantly skew the outcome, and the data can thus be anticipated to generalize well to new samples.  
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The appropriateness of the LOOCV method was confirmed through analyses (both LDA and LLR) for a 

wide range of  randomly determined holdout sample sizes and compositions using the entire data set. Figure S1 

provides the results, illustrating the robustness of the LOOCV approach, outcomes for which always fell well 

within the range of outcomes based on the 9000 holdout tests, which themselves were subject to wide variability 

depending on peculiarities of any randomly selected training vs. testing set. Consequently our primary focus in 

the present work is on results from LOOCV, because that method proves to be relatively stable and to have high 

generalizability.  

 
Figure S1. The six binary configurations of comparisons (a through f) among the groups illustrate 

that LOOCV analysis is well-motivated as a holdout procedure for analysis of the sort we conducted. In each 

panel (a through f), each x-axis location represents 100 training/testing runs (1500 runs per panel, 9000 in all) 

conducted in LDA. On each run a proportion (p) of the sample (ranging from 0.50 to 0.85) was selected for 

training as designated on the x-axes. LDA was used to model discriminability of the binary configuration (e.g., 

in panel a, the configuration autism sample vs typical sample), and the remainder of the samples (1 - p, ranging 

from 0.50 to 0.15) were used to test discriminability of groups based on the models. 100 such randomly selected 

runs yielded a range of outcomes for correct identification of children at equal sensitivity and specificity 
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(labeled “1 - equal error probability” on the y-axes). This range is represented with blue diamonds at one SD 

above the mean for the 100 runs at each x-axis location and with red diamonds at one SD below the mean. The 

means themselves are not plotted, but they can be determined by the reader by imagining a point midway 

between the blue and red points at each x-axis location. The dotted blue lines represent the value obtained for 

each configuration with LOOCV, for which of course there was only one value on each configuration. Note, for 

example, that the LOOCV sensitivity and specificity outcome of  0.8585 for Aut vs. Typ in panel a, falls in the 

midrange of the outcomes from the many randomly selected training/testing sets. For all six configurations, the 

LOOCV method yielded results within the two SD range displayed at every x-axis point representing different 

proportions of training and testing sets. It is especially important that the outcome for LOOCV appears 

conservative with regard to the configurations primarily focused on in this research, configurations a – c, falling 

near the mean value for the randomly selected tests with these configurations. 

 

Table S1.  The LOOCV method shows remarkably similar outcomes for group discrimination under 
Linear Discriminant Analysis (LDA, panel a) and Linear Logistic Regression (LLR, panel b). In all six 

binary configurations of comparisons for panels a and b the discriminability was statistically reliable, and in 5 

of the six, the reliability levels were very high (at least p<10
-4

) (panel a, some data here are the same as in the 

main text Figure 4, but Chi Square and kappa values are added). When comparisons were conducted with a 

holdout method where Phase I data were used for training and Phase II data for testing (panels c and d), the 

outcomes were similar for group discrimination under both LDA (panel c, some data here are the same as in the 

main text Figure 4) and LLR (panel d). Statistical significance levels were lower in the bottom panels than the 

All Data Combined, LOOCV Comparisons (Ns: Typ = 106, Aut = 77, Del = 49)

All Groups Comparisons

Train Models on Phase 1 Data (Typ = 76, Aut = 34, Del = 28)

Then Test Models on Phase 2 Data (Typ = 30, Aut = 43, Del = 21)

LDA Sens/Spec Chi Square p kappa

Aut v Typ 0.8667 38.68 4.99E-10 0.7270

Aut v Typ + Del 0.7255 19.01 1.3E-05 0.4492

Typ v Aut + Del 0.8 30.87 2.76E-08 0.5659

Typ v Del 0.7333 10.83 0.000998 0.4587

Aut v Del 0.6667 6.36 0.011693 0.3060

Del v Typ + Aut 0.5714 1.34 0.247282 0.1036

LLR Sens/Spec Chi Square p kappa

Aut v Typ 0.8667 38.68 4.99E-10 0.7270

Aut v Typ + Del 0.7442 22.30 2.33E-06 0.4865

Typ v Aut + Del 0.8 30.87 2.76E-08 0.5659

Typ v Del 0.7143 9.13 0.002516 0.4208

Aut v Del 0.6512 5.22 0.022363 0.2765

Del v Typ + Aut 0.5714 1.34 0.247282 0.1036

LLR Sens/Spec Chi Square p kappa

Aut v Typ 0.8585 92.92 5.46E-22 0.7118

Aut v Typ + Del 0.7922 73.10 1.23E-17 0.5550

Typ v Aut + Del 0.7925 78.92 6.46E-19 0.5828

Typ v Del 0.7143 25.25 5.04E-07 0.3934

Aut v Del 0.6939 18.15 2.04E-05 0.3758

Del v Typ + Aut 0.5792 3.91 0.047947 0.1114

LDA Sens/Spec Chi Square p kappa

Aut v Typ 0.8585 92.92 5.46E-22 0.7118

Aut v Typ + Del 0.7935 73.78 8.74E-18 0.5576

Typ v Aut + Del 0.7925 79.29 5.37E-19 0.5842

Typ v Del 0.7264 28.27 1.06E-07 0.4171

Aut v Del 0.7013 19.57 9.69E-06 0.3904

Del v Typ + Aut 0.5956 5.72 0.016757 0.1360

a

dc

b
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top ones because the sample size for the Phase II test group was < 20% of the 232 children, but 

sensitivity/specificity values were similar. 

LDA/LLR comparison and z-score conversion. To control for age effects, we used the distribution of 

the 12 acoustic parameters (ratio scores SVI/SCU) for the pooled data at each age interval and converted them 

to z-scores for each recording. The mean and SD for the typically developing recordings were used as the basis 

for the z-score computations for all three child groups. The intervals were windowed as follows: Each was 

centered at a month from 11-47 months; each window was four months wide, thus overlapping substantially 

with adjacent intervals. Each parameter was represented as an age-normalized z-score rather than a raw score in 

our LDA and LLR analyses.  

 The output of LLR can be directly interpreted as an estimate of the PP of autism. For the case of LDA, 

a further assumption was made that the data for each class had a Gaussian distribution and posterior 

probabilities were estimated under this assumption. Table S1 provides the data comparing outcomes of LLR and 

LDA as classification procedures in our research. As can be seen, the results were extremely similar for LDA 

and LLR, whether we examined the LOOCV approach or a different holdout approach where Phase I data were 

used for training and Phase II data were held out for testing. Consequently, in the main text of the article, we 

report outcomes on just one of the two methods, namely LDA.  

The recording device 

Basic characteristics. The LENA (Language ENvironment Analysis) recorder (to view the device and 

clothing, go to http://www.lenafoundation.org/ProSystem/Overview.aspxcan) can securely snapped into the 

chest pocket of specially designed clothing after it is set to record by an adult;  it can be turned off only by 

holding the record button down for several seconds. When fully charged, the recorder can hold 16 hours of 

acoustic data (16 kHz sampling rate). It has a single microphone that remained 7-10 cm from the infant or 

child’s mouth as long as it is snapped into the child’s chest pocket. Given the close mouth-to-microphone 

distance, the recording quality is good in circumstances of low noise, but signal-to-noise ratio is affected 

negatively whenever there are interfering sounds in the environment, including sounds made if anyone touches 

the area on the clothing where the recorder is housed. The device has been involved in several previously 

published papers (45-48). 

Versions of the recorder. Recording data (see next section) have been collected under three primary 

versions of the device since 2006. Tests have revealed no statistically reliable differences among outcomes for 

the basic utterance labeling (which indicates if a sound is the voice of a female adult, a male adult, the child 

wearing the recorder, television or radio, etc.) with the different recorder versions. The papers cited in the prior 

section (45-48) focused on analyses based on this basic labeling, and consequently the authors were empirically 

supported in employing data from all the recorder versions.  
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The analysis in the present work was different, however: Unlike in the prior studies, specialized 

acoustic analysis was done on sequences determined by the software to be speech-related child utterances 

(SCUs), and these SCUs were further segmented into roughly syllabic units (SVIs) by software not involved in 

any of the prior studies. In addition, none of the prior cited studies sought to model group discrimination on 

infrastructural acoustic parameters for infant sounds with LDA or LLR. We have found through comparison 

tests that the differing recorder characteristics across versions could indeed have affected some of the results in 

the discriminatory modeling that was done in the present study. To explain: Most of the children in the Phase I 

typically developing group had been recorded with the first or second recorder versions, but all the language 

delayed and autistic children had been recorded with the third. Thus it is possible that if we had used all the data 

from all recorder versions, some portion of the group discrimination achieved by LDA or LLR could have been 

due to recorder differences (presumably due to differing noise characteristics associated with recordings from 

the three recorder versions) rather than to vocalization differences across child groups. Consequently, the 

research reported here utilized recordings from the typically developing group only if they had all been made 

with the third recorder version, hereafter “the matched recorder” version, because that version was used in 

recording all data from the other child groups. 

Participant groups, recording and assessment procedures.  

Typically developing sample. Naturalistic recordings with the LENA recorder were made during 2006-

2008 by Infoture Inc. of Boulder, CO and are described by Gilkerson and Richards (49) and (45-47). The 

recordings are now the property of the LENA Foundation at the same location in Boulder, CO. This initial 

(Phase I) sample was collected in metropolitan Denver, including 328 typically developing, English-learning 

children, 2 months to 48 months of age. Families were matched to the US Census distribution for mother’s 

educational level at each one-month interval of child age.  

Prior to each recording, families who had given informed consent (approval by Essex Institutional 

Review Board, IRB) received a recorder plus an instruction sheet by overnight courier. After the recording, the 

device was returned to Boulder by courier for processing. Recordings were routinely made from the time 

children were dressed in the morning until bedtime. Children in this sample contributed multiple day-long 

recordings (averaging more than 5 per participant) at one-month intervals on different days of the week each 

month. Parents were compensated for participation.  

All three recorder versions were utilized in this sampling, but a subset (N = 76) of the typically 

developing children in Phase I (the “longitudinal sample”, followed for a longer period than other children in 

the samples) utilized the matched recorder version only. These are the children whose data are compared in the 
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present study with the autism and language delayed samples (who of course were also recorded with the 

matched recorder version).  

For the present research, 712 recordings at 10-48 months from 76 of the typically developing children 

from Phase I of the LENA Foundation natural language sample were examined (see Table S2). The 712 

recordings were selected for the present study because they fell within the age range of available recordings 

from the other child groups in addition to having been made with the matched recorder version.  

Table S2: Children and recordings involved in the present study 

In the course of participation, parents periodically filled out questionnaire assessments. One was the 

LENA Developmental Snapshot, based on 52 questions compiled from a wide variety of existing standardized 

instruments. The Snapshot is an easily administered evaluation conducted periodically to assess communicative 

development of all the children. Details on Snapshot items and reliability/validation data can be found in 

Gilkerson and Richards (50). Of particular importance here are the high correlations obtained between Snapshot 

scores and scores on the most widely accepted early communication scales, the PLS-4 (51) (Snapshot score 

correlation with PLS-4 score on expressive language, r = 0.92; on receptive language, r = 0.93) and the REEL-3 

(52) (expressive r = 0.96, receptive r = 0.96). An additional important evaluation administered for nearly all the 

children in all the groups (see Table S3), the CDI (Child Development Inventory) (53), offered general 

measures of language/communicative, cognitive and social development. A final parent-questionnaire 

assessment was the CBCL (Child Behavior Checklist) (54), providing information about socio-psychiatric 

factors including possible autistic symptoms (see below, Analyses indicating appropriate characteristics of 

the participant groups). Phase I typically developing children were brought into our laboratories in Boulder 

and evaluated during the course of their recordings by a staff speech-language pathologist who administered the 

REEL-3 to 72 of the children and the PLS-4 to all 76.  

Table S2 
CHILDREN 

 

RECORDINGS 

Phase I Phase II TOTAL 

 

Phase I Phase II TOTAL 

Typically developing, N 

Recording age range  

Recruitment 

76 

10-48 mo. 

Denver Metro 

30 

18-37 mo. 

National on-line 

106 

 

 

 

712 

 

 

90 

 

 

802 

 

 

Language delayed, N 

Recording age range 

Recruitment 

28 

10-40 mo.  

Denver Metro 

21 

22-44 mo.  

National on-line 

49 

 

 

 

270 

 

 

63 

 

 

333 

 

 

Autism, N 

Recording age range 

Recruitment 

34 

16-48 

National not on-line 

43 

24-48 

National on-line 

77 

 

 

 

225 

 

 

126 

 

 

351 

 

 

TOTAL 138 94 232 

 

1207 279 1486 
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Table S3 
Snapshot CSBS CDI MCHAT CBCL ADOS CARS 

Ph I Ph II Ph I Ph II Ph I Ph II Ph I Ph II Ph I Ph II Ph I Ph II Ph I Ph II 

Typically developing ALL ALL NONE ALL 73 ALL NONE ALL 42 ALL NONE NONE NONE NONE 

Language delayed ALL ALL NONE ALL ALL ALL NONE ALL NONE ALL NONE NONE NONE NONE 

Autism ALL ALL ALL ALL 32 ALL ALL ALL 31 ALL 17 12 9 15 

Table S3: Number of children for whom results of various assessments were obtained 

 
In Phase II beginning in 2009, additional recordings were made with matched recorders for children 

from families living in a variety of locations around the USA in order to expand the database, to improve the 

potential for hold-out sample testing of the automated procedure (especially with randomly selected holdout 

samples for comparison with each other and with LOOCV), to enhance our ability to evaluate within-group 

variations in vocal patterns, and to provide the opportunity to collect data relevant to diagnosis based on parent 

questionnaire evaluations for all three groups of children. The Phase II participants were primarily recruited by 

internet advertisement. Parents enrolled by filling out an on-line form. This we refer to as the “national on-line” 

recruitment method (Table S2). 30 typically developing children were recorded based on recruitment in Phase 

II. The procedures for consent and recording were essentially the same as those of Phase I. However, only three 

recordings were made per child in Phase II, all occurring during a 7-10 day period. Also in Phase II, additional 

parent questionnaire assessments of language development and social status of the children were obtained (see 

Table S3). These assessments included the MCHAT (Modified Checklist for Autism in Toddlers) (55) and the 

CSBS (Communication and Symbolic Behavior Scales) (56), which were not obtained in Phase I for either the 

typically developing or language delayed samples. These two evaluations were conducted for children in all 

three groups during Phase II (see Table S3). 

The Phase I and Phase II typically developing samples were extremely similar in chronological age 

(Phase I M = 28.5 months, Phase II M = 27.3) and in general characteristics as indicated by the evaluations. 

There were no statistically significant differences between scores for children in the two phases for language or 

general development level as indicated by the Snapshot (either Developmental Age, Standard Score or 

Developmental Quotient) or the CDI (either general development or expressive or comprehension in language). 

Autism sample. In Phase I, national recruitment (but not by the on-line method) for children who had 

been formally diagnosed with autism yielded 34 qualifying and consenting families. In Phase II, an additional 

43 were recruited using the national on-line method. The entire autism sample appears to be typical of children 

commonly diagnosed with ASDs in early childhood (see below Analyses indicating expected characteristics 

of the participant groups). Children were selected to show low language skills compared to age-matched 
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typically developing children and to show other symptoms of autism which could include stereotypic 

movements, a tendency to avoid eye-contact, and so on. The selection procedure excluded Asperger syndrome. 

Parents were asked to send copies of comprehensive evaluations indicating a formal diagnosis of autism from 

physicians, psychologists, and/or other professionals as a condition of participation. The documentation of 

autism diagnosis was extensive. The written reports from diagnostic workups from health professionals and 

parent reports regarding these workups indicated varying degrees of severity. Three children from Phase I and 

two from Phase II were included in the autism sample even though their formal diagnosis was PDD (Pervasive 

Developmental Disorder), the diagnosis that is often applied when a child shows symptomatology consistent 

with autism, but is younger than the usually assumed age threshold (36 months) for formal diagnosis of classic 

autism.  

In Phase I, the families of the 34 children with autism who participated were instructed to record their 

infants once weekly eight times across seven weeks. Recordings were staggered, according to instruction from 

project staff, to ensure that weekend and weekday samples were represented for all children. The analyses 

provided here for Phase I were based on 225 recordings (2 to 8 per child), the ones available when the analysis 

was conducted, all with the matched recorder version. In addition the Snapshot, CSBS, CDI, MCHAT and 

CBCL were obtained for nearly all children in the autism sample (see Table S3).  

In Phase II, the 43 additional children with autism were recorded according to the same schedule as 

with the Phase II typically developing sample. In addition the same parent evaluations as for the Phase II 

typically developing sample were administered (Table S3).  

The Phase I and Phase II autism samples differed in chronological age (Phase I M = 33.6 months, Phase 

II M = 37.8), but like the typically developing sample, were otherwise similar across phases in general 

characteristics as indicated by the evaluations. There were no statistically significant differences between scores 

for children in the two phases for language or general development level as indicated by the Snapshot (Standard 

Score or Developmental Quotient) or the CDI (neither general development, expressive language, nor 

comprehension of language), although, consistent with the chronological age differences, raw scores and 

developmental ages were somewhat higher in Phase II children. 

Language delayed sample. For the language-delayed sample, 28 children were recruited in Phase I 

from the Denver metropolitan area based on a prior formal diagnosis by speech-language pathologists or 

pediatricians of communication delay, not designated as being associated with autism. The sample had been 

selected to be age-matched with the typically developing sample, which originally included children through 

three years of age, but was later extended to 48 months, after the language-delayed group had already been 

recruited and largely recorded; hence recordings from the language delayed sample were not obtained beyond 

age 40 months in Phase I. Procedures for recruitment and intake were similar to those for the autism sample. 
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The children had all been diagnosed by speech-language pathologists or pediatricians as having speech or 

language delays or, in the cases of the youngest children, developmental delays involving or expected to involve 

communication or vocalization. The specific diagnoses were various, including many who were simply 

characterized as having speech-language delays, and several with mixed diagnoses including two with 

apraxia/dyspraxia, four with sensory integration disorder/central auditory processing disorder, and three 

designated as failure to thrive. One infant had Down syndrome.   

The children in the language-delayed samples of Phase I were also evaluated by a certified speech-

language pathologist in the Boulder laboratories twice, once in the first month and once in the sixth month of 

the sampling. Both the REEL-3 and the PLS-4 (51, 52) were administered to each of the children with language 

delay in Phase I, and additional development evaluation notes were compiled based on the clinician’s 

impressions. On the basis of this evaluation, four of the children with language delay were designated 

(unexpectedly) as having “autistic characteristics”. These children are considered individually in results below 

(Individual children and subgroups of particular interest in the group discrimination analyses). For all 

children in the language delayed sample in Phase I, we also obtained the Snapshot and the CDI.  

Recordings for children with language delay in Phase I were conducted monthly over a six-month 

period, with the exception that three recordings were made in the second and sixth months for a total of 10 per 

child. Otherwise the protocol was the same as for the longitudinal typically developing sample.  

In Phase II, 21 additional children with language delay were recruited through the national on-line 

method, and recordings were conducted according to the same schedule as with the Phase II typically 

developing and autism samples. These children included a mixture of presumed etiologies similar to those of 

the Phase I language delayed children with the exception that the on-line recruitment procedure had yielded a 

larger proportion (7/21 as opposed to 2/28) of  children designated as having apraxia. The same parent 

evaluations as for the Phase II typically developing and autism samples were administered (Table S3). 

The Phase II language delay sample was statistically significantly older (evaluated by ANOVA with 

Posthoc Tukey’s t-tests) than the Phase I sample (Phase I M = 26.7 months, Phase II M = 32.0, p < .05). In spite 

of this fact, language levels in Phase II were significantly lower (p < 0.01) as suggested by the Snapshot 

Developmental Quotient (Phase I M = 75.8; Phase II M = 57.3) and Standard Score (Phase I M = -1.37; Phase II 

M = -2.40). Importantly, in Phase II, language delay children were recruited specifically to show low scores on 

the Snapshot. However, the Snapshot Developmental Age for children from the two Phases was not reliably 

different, presumably because the fact that the Phase II sample was chronologically older tended to offset their 

lower language levels. In contrast, CDI results showed slightly higher scores for Phase II, but they were not 

statistically significant. 
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 Summary of selection criteria for the participant groups. For both Phase I and Phase II, the following 

selection criteria were applied: 

1. For typically developing children: 

a. No indication of developmental disorder 

b. English language in the home 

c. Age ≤ 48 months 

2. For children with language delay: 

a. Parent report that a diagnosis of language delay had been given by a speech-language 

pathologist 

b. English language in the home 

c. No indication of autism in prior diagnosis 

d. Age ≤ 48 months 

3. For children with autism: 

a. Parent report that a diagnosis of ASD had been given by a qualified professional 

b. Written diagnostic documentation supplied by parents to our staff from the professional(s) who 

had evaluated the child 

c. Asperger syndrome excluded 

d. English language in the home 

e. Age ≤ 48 months 

 

For  Phase II, the following additional selection criteria were applied: 

4. For typically developing children: 

a. Age 18-36 months 

b. Not failing the MCHAT on either scoring option (not autistic) 

c. Not < 80 and not > 110 on the Snapshot (midrange language levels) 

d. No sibling with developmental delay diagnosis 

e. No sibling with autism 

f. No other symptoms of autism on intake questionnaire (frequently repeated motions, lack of eye 

contact) 

5. For children with language delay: 

a. Not failing the MCHAT on either scoring option (not autistic) 

b. Written diagnostic documentation supplied by parents to our staff from the professional(s) who 

had given the diagnosis of language delay to the child  

c. At least 1.5 SD below the Standard Score mean on the Snapshot (clearly low language level) 

d. No sibling with autism 

e. No other symptoms of autism on intake questionnaire (frequently repeated motions, lack of eye 

contact) 

6. For children with autism: 

a. Fail MCHAT on at least one of two scoring options 

 

Ethnicity was not a factor in subject selection at any time for this study, although non-English-speaking 

families were excluded. Table S4 presents the data on ethnicity, indicating that the predominant ethnic group 

was Caucasian/not Hispanic in all three child groups (typically developing M  = 81%, language delayed M = 

84%, autism M = 83%).  
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Table S4 Typically developing Language delay Autism 

   Phase I Phase II Phase I Phase II Phase I Phase II TOTAL 

African-American 5 2 0 0 0 2 9 

Asian 0 0 2 1 1 2 6 

Hispanic 7 1 2 2 4 1 17 

Native American 1 0 0 0 0 1 2 

Caucasian/not Hispanic 59 27 23 18 27 37 191 

Other 4 0 1 0 2 0 7 

TOTAL 76 30 28 21 34 43 232 

Table S4. Ethnicity breakdown for the three participant groups. 

Analyses indicating appropriate characteristics of the participant groups. Our participant families 

were volunteers meeting the criteria indicated above. We evaluated the possibility that the samples could have 

been skewed by self-selection in ways that might have distorted the research outcomes. In particular we 

evaluated the extent to which the samples showed the usual characteristics associated with their diagnosis or 

lack of diagnosis as indicated by the parent-questionnaire evaluations. Figure 1b and 1c  in the Main Text show, 

for example, that language level on the Snapshot was low for the language delayed sample and even lower for 

the autism sample, as expected. Taking the standard error data from the Figure into account, the language level 

differences among the groups were extremely large, and ANOVA with Posthoc Tukey’s t-tests indicated they 

were highly statistically significant (p<10
-8

). 

Similarly, scores were available for both the CDI on both expression and comprehension of language 

for 87% of the 232 children. Both raw scores and age equivalent scores showed that as expected the typically 

developing children’s language levels (age equivalent expressive M = 31.9 months, SE = 1.3; comprehension M 

= 28.9, SE = 1.2) were robustly higher (p < 0.0001) than for either of the other groups, who showed similar 

outcomes on this measure (language delayed expressive M = 22.5 months, SE = 0.9; comprehension M = 22.6, 

SE = 1.0: autism expressive M = 23.6 months, SE = 1.0, comprehension M = 21.6, SE = 1.0). The age equivalent 

score difference is particularly revealing given that the mean real age of the typically developing sample was 

considerably lower than that of the autism sample and narrowly lower than that of the language delay sample.  

Figure S2 shows group differences, as expected, on socio-psychiatric measures obtained through the 

CBCL. Very robust differences were found between the autism and typically developing samples on all 

measures. Also the language delayed sample fell between the typically developing and autism samples on 11 of 

the 12 measures, and differences between the language delay sample and the other groups were strong in more 

than half the cases (see CIs in the figures). Especially notable were the very high values for the autism sample 

on the two factors deemed most indicative of autism (Pervasive DD and Withdrawal), both falling above levels 

designated for the clinically disordered range (dotted lines).  
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The current autism sample (N = 74, including all the children for whom the relevant test data were 

available, mean age = 36 months) was very similar on the CBCL measures to that of an independent autism 

sample reported by Sikora, et al. (57) (N = 50, mean age = 50 months, see Figure S3). Again both samples fell 

above thresholds for clinically significant values on Pervasive DD and Withdrawal. 

Additional analysis using CSBS (56, 58) data, available for typically developing and language delayed 

children in Phase II and for all children in the autism sample, showed a similar pattern to that for the CBCL. 

Composite score on social factors, presumed to be particularly indicative of autism, were dramatically different 

for the child groups, with the autism sample again falling beyond a clinically significant threshold. The groups 

were also very strongly differentiated on the symbolic composite score. On the speech composite, the two 

language-disordered groups scored very similarly but differed dramatically from the typically developing 

sample.  The younger sample of children from Wetherby et al. (56, 58) (for all three groups M = 21 months; our 

study typical M = 28 months, language delay M = 29 months, autism M = 36 months) also showed stark 

differences between autism and typically developing children on all three composite scores, see Figure S4. 

 

Figure S2: Group differentiation for the current sample (Phase II) on diagnostic features of the CBCL. 

These data are based on  94 children, 285 recordings collected in Phase II, which included administration for all 

participants of a parent questionnaire designed to assess social and psychiatric parameters, the Child Behavior 

CheckList (CBCL, (54)). The CBCL consists of two groupings of characteristics (DSM and Empirically-based). 

Children with autism were rated statistically reliably higher on all the characteristics than the typically 
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developing children, but especially notable were extremely high values for children with autism on primary 

characteristics known to be associated with autism, namely pervasive developmental problems and withdrawal, 

where their ratings were in the clinically disordered range (dotted lines, 65 = clinical threshold, 70 = severe 

rating). 

 

Figure S3: Comparison of current autism sample with that of a published autism sample on CBCL 

measures 

 
Figure S4. Data on Social, Speech and Symbolic Scales of the CSBS (56, 58) for the current samples and 

for somewhat younger children from the Wetherby et al. sample. 
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Automated analysis algorithms 

Targeted acoustic sequences in the recordings. The goal of the automated analysis was to locate key 

child utterances (i.e., vocalizations produced by the infant or child wearing the recording device, as opposed to 

any other child in the environment) that could be deemed to be speech or indicators of an emerging capacity for 

speech. Thus acoustic events resembling speech or representing presumably voluntary vocalizations that are 

thought to be precursors to speech (babbling, cooing, squealing, growling, etc.) were included in the analysis, 

while such sounds as cries and vegetative noises, presumed to be relatively involuntary, were excluded. Also 

child utterances were grouped into clusters or phrases consisting of key child utterances as they occurred in the 

stream of vocalization and conversational interchange with other speakers. Five basic steps of analysis were 

used to locate the acoustic signals for analysis, and in step 6 the acoustic analysis occurred. 

Step 1: Utterance cluster (CUC) location. The first step automatically located and labeled acoustic 

signals corresponding to the key child voice as child utterance clusters (CUCs). (The term CUC  is used in this 

paper although the LENA software actually assigns labels CHN, for “child near”, that is, highly audible and 

CHF, for “child faint or fuzzy”, to the vocalizations in question). CUCs were defined to have at least 600 ms 

duration and to consist of periods identified as pertaining to the voice of the key child, while not being 

interrupted by utterances of any other speaker (labeled as male adult, female adult, or other child) and also not 

being interrupted by silence or noise of more than 800 ms as illustrated in Figure S5. The method was designed 

to locate relatively continuous  periods of infant or child vocalization that were either produced as key child 

contributions to vocal interactions or as child monologues. The identification was based on a maximum 

likelihood algorithm using Gaussian mixture models that had been trained to recognize the key child voice and 

other types of sounds.   

 

Figure S5.  A waveform example including a key child and a female adult voice as identified by the 
analysis algorithm. By definition, child utterance clusters (CUCs) are bounded by not less than 800 ms of 

silence or sound not produced by the key child. A silence of 900 ms and a female adult voice of substantially 

greater duration separate the CUCs in the figure. See Supporting text for details of the procedure of CUC 

identification. 

CUC1 CUC2 Female Adult CUC3Silence
= 900 ms
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The limiting values of 600 and 800 ms for duration of CUCs and interruptions of them by other sounds 

or silences respectively were selected primarily on the basis of the empirical performance of the system in 

classifying utterances in such a way as to match auditorily-based judgments from human transcribers – 

agreement with the auditory codings proved best when these limiting values for automatic labeling were used.  

The values are also, however, theoretically justifiable: 600 ms can be said to represent a duration for an 

utterance consisting of one long syllable or two syllables (a typical metrical foot) of usual duration in adult or 

child speech (59, 60). Consequently the 600 ms constraint focused the analysis on CUCs with a relatively high 

minimum level of  prominence. The 800 ms minimum value for interruptions between CUCs was similarly 

theoretically based; pauses between elements of a conversation are commonly 800 ms or longer (61-63).  

To achieve this automatic recognition of CUCs and other sounds, 230 hours of recording from the 

dataset of infant and child recordings from 2-48 months were first coded auditorily by human transcribers to 

identify each vocalization sequence perceived as being produced by the key child, another child, a female adult, 

a male adult, or voices from television, stereo, radio or electronic toys. Other noises and silence, as well as 

overlapping sounds of any of the prior categories were also coded, so that the training recordings were labeled 

exhaustively.  The Gaussian mixture models were trained to mimic the auditory codings, exhaustively labeling 

the recordings in terms of the same categories.   

Step 2: Locating utterances (CUs) within utterance clusters (CUCs). A CUC could contain one or 

more child utterances (CUs), not overlapping with or significantly interrupted by any of the other vocal 

categories, see Figure S6. The division of CUCs into CUs was accomplished in the second step of the automatic 

analysis, wherein periods of high energy within CUCs were identified (although sometimes there was just one 

high energy period in a CUC). The beginning of the first CU in a CUC was automatically labeled when the 

acoustic energy level first rose to 90% above baseline for at least 50 ms and ended when it fell to less than 10% 

above baseline for at least 300 ms.  

The term “utterance” is drawn from the literature in infant vocalizations and child phonology where it is 

typically defined by a “breath-group” criterion (64, 65). The idea is that vocalization occurs on expiration, and 

each time an inspiration occurs (or each time there is a break in sound long enough for inspiration to occur, 

nominally 300 ms), listeners perceive a break between vocal events. Vocalization occurring during expiration 

can of course be broken up by brief articulatory events (consonantal-like closures of the supraglottal vocal 

tract); a combination of expiratory events and any number of these brief articulatory breaks without an 

inspiration is termed a “breath-group” or “utterance”. 

Child utterances (CUs) were thus defined to consist of breath-groups of child vocalization within CUCs 

separated by not more than 300 ms of other sound or silence. The value of 300 ms was chosen because it has 

been shown empirically to fall at the high end of the distribution for silences or for low energy periods 
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(corresponding usually to consonantal closures) occurring within an utterance (63, 66). Further, 300 ms can be 

thought of as a nominal average duration for a stressed syllable (the minimal utterance) in mature speech (67).  

CUC

CU1

Silence

= 400 

ms

CU2

Silence

= 500 

ms

CU3                      

CVI1 Silence

= 400 

ms

CVI3 Silence

= 500 

ms

CVI4Silence

= 200 

ms

CVI2

CVI1
SV I1

Silence
CVI3

Vegetative

Silence CVI4
Cry

Silence CVI2
SVI2

SCU Not used in our 

analysis

1

2

3

4

5

Step

 
Figure S6. Waveform example showing that a CUC can consist of one or more child utterances (CUs). 
The first CUC from Figure S5 is expanded here to show the three child utterances (CUs) of which the cluster 

consisted. CUs are by definition bounded by not less than 300 ms of other sound or silence. The silence of 200 

ms within CU1 is a consonantal closure within the utterance. The figure also illustrates the five steps of the 

identification of segments.  In the first two steps CUCs and the CUs of which the CUCs are composed are 

identified. In step 3 CVIs (child vocal islands), corresponding roughly to syllables within CUs, are located. In 

step 4 CVIs are further categorized as either Speech-related Vocal Islands (SVIs), or as vegetative sounds or 

cries. In step 5 any consecutive sequence of SVIs within any CU is further classified as a Speech-related Child 

Utterance (SCU). The SVIs (blue arrow intervals in the figure) are the focus of the acoustic analysis, and the 

primary measures addressed in this work represent ratios: The number of SVIs classified as “plus” within each 

recording on each parameter divided by the number of  SCUs (red arrow intervals in the figure) within that 

recording. See Supporting text for details of the procedure of identification of utterances and SVIs at all five 

steps. 

Step 3: Identification of child vocal islands (CVIs) within CUCs. In step 3 of the automated analysis, 

as indicated in Figure S4, “islands” of high energy were identified within CUs (often there was just one such 

island in a CU). A key child vocal island (CVI) was automatically labeled when the acoustic energy level rose 
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to 90% above baseline for at least 50 ms and ended when it fell to less than 10% above baseline for at least 50 

ms, but not more than 300 ms, because as required by the utterance criterion, a CU boundary would have been 

inserted by the algorithm after 300 ms. In general CVIs correspond to syllables with very strong differentiations 

of acoustic energy level between nuclei (or vowels) and margins (or consonants).  

Step 4: Classification of speech-related child vocal islands (SVIs). In the fourth step (see Figure S6), 

each key child vocal island or CVI was automatically assigned to one of three categories: (a) cry, (b) 

“vegetative sounds”, consisting of such sounds as sneezing and coughing as well as laughter, and (c) speech-

related vocal islands (SVIs), using another  maximum likelihood algorithm based on Gaussian mixture models. 

SVIs included prespeech vocalizations of children such as cooing and babbling as well as real speech (In some 

of the prior writings regarding LENA analyses, the term “meaningful speech” has been used to refer to speech-

related vocalizations. The present work adopts the term “speech-related” to ensure the understanding that both 

speech and many prespeech vocalizations such as cooing and babbling are understood to be included under the 

term. The term “SCU count” corresponds to the formal label “vocalization count” in the LENA software.).  

The models corresponding to these categories had been developed through training with 23 hours 

consisting exclusively of waveforms that had previously been auditorily coded by human transcribers as (a), (b), 

or (c). There were 8 hours of (a), 4 of (b), and 11 of (c).  The training materials had been drawn from 223 days 

of recording from the typically developing sample evenly distributed across the age range of 2 to 41 months. 

Gaussian mixture models were developed using the training materials for each of the three categories and for 

each age in months. Hence there were 3 x 40 or 120 Gaussian mixture models to be applied to the test sets from 

the three groups. This three-fold automated classification afforded segregation of the SVIs from other infant and 

child sounds (cries and vegetative sounds) that are arguably less relevant to the development of speech (68-70). 

Step 5: Grouping of speech-related vocal islands into speech-related child utterances. In the fifth step 

(Figure S7), consecutive child vocal islands within any CU, all of which had been categorized as SVIs, were 

grouped into speech-related child utterances (SCUs) where (in accord with the utterance criteria specified in 

step 2 of the analysis) no interruption of the sequence by silence, cry, vegetative sounds, or any other voice 

could exceed 300 ms.  

The logic of the analysis sequence allowed CVIs consisting of cries or vegetative sounds to occur 

within CUs, but cries and vegetative sounds were not included within SCUs. Thus a single CU could be broken 

up into multiple SCUs by interruptions between SVIs consisting of any consecutive sequence of algorithm-

identified cries or vegetative sounds plus other periods not identified as the key child’s voice. If such an 

interruption between SVIs within a CU exceeded 300 ms, a boundary was automatically established between 

two SCUs. 
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An example is provided in Figure S7, where the second CU includes four SVIs, broken up into two 

SCUs by a cry. To summarize the criteria for identification of SCUs, if a low energy period (a break between 

islands) was greater than 50 ms and less than 300 ms, it was treated as a within-vocalization consonantal 

(articulatory) event, separating two SVIs within an SCU, but if the break or any combination of a break and a 

cry or vegetative sound exceeded 300 ms, it was treated as a boundary between two SCUs. SVIs were thus 

grouped in such a way that they could contain a single syllable or a series of syllables where energy did not fall 

below the minimum of 10% above baseline consistent with the criterion defining the notion island. It is 

important to recognize that nasal or glide consonants, for example, typically do not fall below this energy 

baseline, while stops typically do. Consequently, a series [mamama] would often be categorized by the 

algorithm as a single SVI, while [papapa] would be categorized as three SVIs within a single SCU.  

CU1

CVI1 CVI3CVI2

SCU1Not used in our 
analysis

Silence
= 500 

ms

CU2

CUC

CVI4 CVI5 CVI6 CVI7 CVI8

CVI1
Cry1

CVI3
Vege-
tative

CVI2
Cry2

CVI4
SVI1

CVI5
SVI2

CVI6
Cry3

CVI7
SVI3

CVI8
SVI4

Not used in our 
analysis

SCU2

 
Figure S7. An illustration that a single CU can be broken up into more than one SCU by intervening 
sounds such as cries (produced by the key child), which are not deemed to be speech-related. In the 

pictured CUC,  two CUs are separated by 500 ms of silence. The two CVIs in CU1 are cries, and so are not 

categorized as corresponding to an SCU. Within CU2, however, there are two SCUs, the first consisting of SVI1  

and SVI2, and the second consisting of SVI3 and SVI4. These two SCUs are separated by Cry3. Cries and 

vegetative sounds are not addressed in the acoustic analysis that is the primary focus of this work. See 

Supporting text for details of the procedure of identification of utterances and SVIs at all five steps. 
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The number of syllables in utterances as identified by a human listener was considerably higher than 

that identified by the machine algorithm based on the VC measure, because the algorithm’s criterion for low 

energy boundaries between islands was set in such a way that some consonants (nasals and glides, for example) 

were often treated as within-island acoustic events rather than as indicators of island boundaries. Thus the 

concept “island” as we use it here has only a rough relation with the notion “syllable”. The current algorithm for 

island identification has the advantage of being computationally efficient, requiring little CPU time. In future 

automated applications we intend to use models that are currently much less efficient computationally, but that 

more directly and completely assess syllabification.  

The importance of SCU grouping owes to the fact that the acoustic analysis ultimately focused on 

features occurring in SVIs as a proportion of SCUs. The ratio measure (SVIs/SCUs) normalized the data on 

acoustic feature usage across children for differences in volubility or talkativeness, and because cries and 

vegetative sounds were not included in SCUs, the normalization ignored differences between the children in 

terms of likelihood to cry or produce other sounds unrelated to speech such as coughing or sneezing.   

Step 6: Automated acoustic feature analysis. In the sixth step the SVIs were analyzed acoustically: A 

1024 point Fast Fourier Transform (FFT) was performed for each 64 ms frame in the analyzed recordings, and 

was advanced by 10 ms, whereupon the procedure was repeated until the entire SVI had been analyzed. At each 

frame, maximum spectral energy and total energy were determined in dB along with frequency at which the 

maximum spectral energy occurred. In addition entropy of the FFT spectrum was computed, and total energies 

were determined for 8 frequency bands of 1 kHz each. Also a 7-coefficient Linear Predictive Coding (LPC) 

spectrum was computed for each 15 ms frame and was advanced in 10 ms increments during analysis. F1, F2 

and F3 frequencies were projected by the analysis to occur in ranges appropriate for a very young child vocal 

tract length (nominally 7 cm). An autocorrelation-based algorithm also determined pitch within the range of 60 

to 1600 Hz at each 15 ms frame.  

The final analysis was conducted at the level of the SVI. In order to be included in that analysis, each 

SVI had to fall within the durational range of 110 to 3000 ms. SVIs outside this range were not included in the 

analysis on the grounds that they were either too short to constitute well-formed syllables or too-long to 

constitute well-formed individual prosodic phrases in speech (64). The durational constraints were thus 

designed to confine the analysis to SVIs that could be expected to have greatest relevance to the development of 

speech. 

From this point the automated analysis focused on classifying SVIs in the specified duration range 

dichotomously (positive classification or negative classification) with regard to the set of 12 acoustic parameters 

that had been selected to represent dimensions of infraphonological development (i.e., development of the 

infrastructure for speech) in infancy and early childhood. Table S5 outlines the 12 parameters.  
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The 12 acoustic parameters 

1. The first group of parameters (the rhythmic/syllabification group) identified voicing events, canonical 

syllables, and moderately high spectral entropy, typical of speech (VC, CS and SE).  

a. VC or voicing (i.e., voiced SVIs per SCU) can be portrayed as a measure of the degree to 

which SCUs were acoustically organized to yield clear boundaries between periods of high 

energy phonatory regularity (voicing) and periods lacking that high energy voicing. In practice 

the measure roughly captured a minimum number of voiced islands (very roughly syllables) per 

SCU. Voicing was determined by whether the autocorrelation method was able to assign a pitch 

during each frame. If at least 10 frames or 60% of all frames in an SVI were assigned a pitch 

with 90% confidence, the SVI was categorized as positive for VC, otherwise it was categorized 

as negative. 

b. CS or canonical syllables per sequence provided a measure of the well-formedness of the initial 

formant transitions of each SVI with respect to initial transitions of syllables in mature speech 

(71). For SVIs 110 to 600 ms in duration, first and second formant frequencies were 

automatically tracked based on the LPC values from the beginning of each SVI until a 

maximum slope change for each formant could be determined. If, to that point, F1 slope was 

equal to or greater than 3 or F2 slope was equal to or greater than ± 5,  if the max slope change 

had been reached within 120 ms, if the island had been designated as VC with average pitch > 

250 and < 600 Hz, and if the bandwidths of F1 and F2 were lower than an empirically 

determined maximum, then the island was classified as positive for containing an initial CS. 

These criteria represent an approximation to the traditional acoustic specifications for canonical 

syllables in the infant vocalization literature (72). 

c. The classification SE was applied to islands with spectral entropy of the FFT exceeding an 

empirically determined value representing a deviation from the pattern of variation that is 

associated with pure normal phonation in childhood. The threshold for classification was set 

low enough that islands showing the sort of spectral variability in entropy that occurs in 

utterances of typical speech were classified as SE.  

2. The second group of parameters (the low spectral tilt and high pitch control group) was represented by 

the number of islands per sequence showing squeal quality (a technical term in the infant vocalization 

literature), low spectral tilt, or a first spectral peak at high frequency (SQ, LT, HF):  

a. SQ represented pitch substantially exceeding a maximum value expected for child voices in 

speech-like utterances, set nominally at a mean of 600 Hz  for the island.  
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b. LT was evidenced by high energy in the highest spectral band (7-8 kHz)  relative to the energy 

at the maximum spectral peak from 0-6 kHz. If the highest band’s energy was within 30 dB of 

the maximum spectral peak from 0 through 6 kHz for 50% of the island’s frames, the island 

was classified as LT.  

c. HF required the first (lowest frequency) spectral peak to occur at above 1.5 kHz for 25% of the 

island’s frames. 

3. The third group (the wide formant bandwidth and low pitch control group) was represented by the 

number of islands per sequence showing growl quality (again a technical term in the infant vocalization 

literature) or high bandwidth of resonances (GW, WB):  

a. GW required pitch to be substantially below an expected minimum level for infant/child voices 

in speech-like utterances, viz., mean < 250 Hz for the island. 

b. WB required that bandwidths for the first two formants (determined by a 3 dB drop from peak 

amplitude) exceed a value empirically determined to correspond to typical bandwidths of 

vowel-like sounds produced with normal phonation by children (> 400 Hz for F1and  > 600 Hz 

for F2). 

4. The fourth group (the duration group) was represented by the number of islands per sequence showing 

short, medium, long or extra long durations (S, M, L, XL):  

a. S islands were greater than 110 through 250 ms 

b. M  islands were greater than 250 through 600 ms  

c. L islands were greater than 600 through 900 ms  

d. XL islands were greater than 900 through 3000 ms  

The infrastructural parameters were derived from a theory (72) intended to be language universal. 

Infants all over the world are seen within this theory as beginning life with similar inclinations to explore the 

vocal capacity, and with similar anatomical and physiological capabilities with which to engage in that 

exploration.  The parameters provide a frame for evaluation of the extent to which infant vocalizations produced 

in this exploration and in social interaction come to approximate infrastructural characteristics of well-formed, 

mature speech syllables (73). Since the most commonly occurring syllables in languages all over the world are 

drawn from a relatively small repertoire, all formed in accord with restrictions regarding the parameters above 

(voice, canonicity of formant transitions, spectral entropy and so on), the theory is able to provide a framework 

within which vocal development can be tracked universally early in life. Research within the model has 

addressed a variety of ambient languages (68, 70, 97, 72) (see below, Supporting Background: Research in 

development of vocal acoustic characteristics).  
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a. Rhythm/Syllabicity  
Positive classification on group a features suggested speech-

like rhythmic organization because values analyzed were 

islands (roughly, syllables) per utterance (SVIs per SCU) 

showing group a features. Thus, utterances were rhythmically 

organized in accord with speech if they tended to show 

relatively high numbers of syllables per utterance with voicing, 

canonical formant transitions, and spectral entropy variations 

typical of speech.  

1  VC  Voiced or unvoiced: pitch detectable through > 

50% of SVI (roughly, syllable)  

2  CS  Canonical Syllable transitions or not: Formant 

(F1 and F2) transitions < 120 ms  

3  SE  Spectral Entropy typical of speech or not  

b. Low spectral tilt and high pitch control  
Positive classification on group b parameters suggested control 

of high pitch and low spectral tilt, which tend to occur in 

certain typical emotional expressions of high intensity (squeal 

quality). More islands per utterance positive on b parameters 

suggested more active emotional expression in the high 

spectral frequency range.  

4  SQ  Mean pitch high or not (SQueal): > 600 Hz  

5  LT  Low Tilt of spectrum or not  

6  HF  High Frequency energy concentration or not  

c. Wide formant bandwidth and low pitch control  Positive classification on group c parameters suggested control 

of low pitch and high bandwidths of the first two formants, 

qualities which tend to occur in certain typical emotional 

expressions of high intensity (growl quality). More islands per 

utterance positive on c parameters suggested more active 

emotional expression in the low spectral frequency range.  

7  GW  Mean pitch low or not (GroWl):  < 250 Hz  

8  WB  Wide Bandwidth of first two formants or not  

d. Duration of islands (SVIs) within utterances (SCUs)  
Group d parameters split according to durations typical of 

syllables in speech. Positive classification on parameters 9 and 

10 suggested speech-like rhythmic organization because the 

durational values indicated are typical of syllables in speech. 

More islands per utterance with 9 and 10 thus suggested more 

speech-like syllables. Positive classification on parameters 11 

and 12 suggested the opposite, because the corresponding 

ranges are beyond the durations of typical syllables.  

9  S  Short (110 - 250 ms)  

10  M  Medium (250 - 600 ms)  

11  L  Long (600 - 900 ms)  

12  XL  EXtra Long (900 - 3000 ms)  

 
Table S5: The 12 acoustic parameters used for automated analysis of SVIs. These pertain to four groupings 

a-d, indicated also by color coding. See accompanying text above for further explication of the parameters. 
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Reliability of the automated analysis  

Reliability of identification of the key child voice. To assess the reliability of the automated analysis, a 

70-hour sample from the recordings was coded auditorily by a panel of phonetically trained listeners and used 

to test the automated labeling. One-hour samples were selected from 70 different infants/children distributed 

across the age range from 2-36 mo. A reliability analysis related to this one can be found in LENA Foundation 

technical reports and has been reported by Xu et al. (45). The present analysis is based on a slightly different 

focus: Both “near” (high signal to noise ratio) and “far” (low signal to noise ratio) CUCs were included in the 

reliability analysis here, whereas in Xu et al., only near CUCs were included. The 70 hours had been selected 

from recordings at 2-36 months of age, with each hour composed of six different non-contiguous periods of 

high vocal activity. The reliability analysis was based on comparisons of 10 ms time periods across the human 

transcribed and machine labeling, implemented with a 30 ms. collar guard, also specific to the present study.  

Periods that were automatically labeled in step one above as pertaining to a CUC were found to agree 

with the human transcriber labeling 73% of the time, with only 5% false positives (see Table S6a). Similarly, 

64% of the time periods identified by the algorithm as pertaining to CUC, were also identified by the human 

listeners as pertaining to CUCs (see Table S6b). Because a larger proportion of all intervals were “other” than 

were “key child”, the absolute numbers of “other” errors were higher than might be expected from the 

percentages. In fact false positives in Table S6a, while representing only 5% of identified “others”, occurred in 

absolute numbers of intervals about 1/3 as often as true positives (hits).  

a. 

Human listener 
classification

Machine classification

Key child Other

Key child 0.73 0.27

Other 0.05 0.95

b.

Human listener  

classification

Machine classification

Key child Other

Key child 0.64 0.03

Other 0.36 0.97

 

Table S6. Proportion correct classification of all 10 ms frames as belonging to CUCs (key child utterance 

clusters) as opposed to belonging to other sounds or silences based on 70 hours of auditorily classified (by 
human transcribers) and machine classified data with a 30 ms. collar guard. In these data, the CUCs (Key 

child) were strictly limited to utterances labeled as pertaining to the child wearing the recorder. Segments 

labeled as “overlapping” with other sounds or voices by the automated labeling were, of course, not included. 

(a) Classification results based on computation of proportions using row sums of raw numbers of 10 ms frames 

as denominators (gold standard = human listener). (b) Classification results based on column sums (gold 

standard = machine). See Supporting text for further details on reliability analysis procedures and results. 
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Given the state of the present technology, human listeners prove to be better than the machine algorithm 

at recognizing voices when there is overlap or background noise, a fact that accounts for the relatively high 

false negative rate of the machine algorithm (Table S1a). The algorithm is unable to be as certain as human 

listeners that an unusual sound or a sound in noise might be the product of the child voice. The goal of the 

automated identification procedure is to maintain high certainty on vocalizations that are identified as being 

produced by the child, and thus an important feature of the automated maximum likelihood procedure is its 

relatively low false positive rate, ensuring that when it identified a child vocalization, it was predominantly 

correct. 

In a separate reliability test, the 70 hours of auditorily coded material were used to test the automated 

labeling of CVIs as SVI vs other (cry/laugh, vegetative).  This analysis focused on CVIs that had been identified 

both by the machine algorithm and the human transcribers. The hit rate of the machine algorithm for SVIs 

identified by human listeners averaged 75% across the age range (see Table S7a), indicating that SVIs were 

generally well-differentiated from the infant’s own cry and vegetative sounds: Confusions were primarily 

associated with fussy sounds, the kinds of sounds that include characteristics of both speech-like sounds and 

cry. Similarly 86% of SVIs as indicated by the machine algorithm were also identified as SVIs by the human 

listeners (see Table S7b). 

a. 

Human listener 

classification

Machine classification

SVI Cry/Vegetative

SVI 0.75 0.25

Cry/Vegetative 0.16 0.84

b.

Human listener  

classification

Machine classification

SVI Cry/Vegetative

SVI 0.86 0.28

Cry/Vegetative 0.14 0.72

 

Table S7. Proportion correct classification of all 10 ms frames within CVIs as either SVI or cry/vegetative 

for 70 hours of auditorily classified (by human transcribers) and machine classified data. (a) 
Classification results based on computation of proportions using row sums of raw numbers of frames as 

denominators (gold standard = human listener). (b) Classification results based on column sums (gold standard 

= machine). See Supporting  text for further details on reliability analysis procedures and results. 

 Additional reliability checks were conducted with a sample of data from all three groups of 

infants/children evaluated in the present work (typically developing, autistic, language delayed) across the range 

from 9 to 41 months.  16 five-minute periods were selected, one each from 8 infants and children in the 

typically developing sample, and 4 each from infants and children in the autistic and language delayed samples. 

The listener/human transcriber was the first author, who has been involved in research on infant vocal 
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development for over 30 years (73, 74). This research has involved the development of a widely utilized 

categorization scheme for early infant sounds (72) as well as extensive research in phonetic transcription and 

acoustic analysis of infant and child speech (75, 76). He has trained hundreds of students and colleagues in 

categorization of speech and speech-related vocalizations and in phonetic transcription, and has served as the 

“gold-standard” transcriber/coder in published research in infant vocalizations (77). 

One human/machine agreement evaluation based on the 16 samples focused on the automatically 

identified SVIs.  The listener made auditory judgments on 1202 automatically identified SVIs occurring in these 

16 samples. The first judgment in each case was whether the SVI had in fact been produced by the infant/child 

or by some other sound source. Fewer than 0.03 of the SVIs failed that auditory test, suggesting again a very 

low false positive rate in the automated identifications – vocalizations identified by the automated procedure as 

produced by the child were indeed overwhelmingly produced by the key child, although there were cases where 

the key child’s voice was not the only one that could be heard during the SVI interval. The low false positive 

rate is a further indicator of the conservatism of the automated approach with regard to infant/child voice 

identification. 

 Reliability of automated acoustic feature identification. The same 1202 SVIs from the three groups of 

infants/children were evaluated by auditory and acoustic inspection individually. Duration measurements 

yielding the fourfold classification (S, M, L, and XL) were correct in portraying labeled intervals, but it should 

be noted that labeled SVI intervals often represented less than the total continuous vocalization period of 

infant/child utterance as heard at playback. In practice, machine-identified SVIs often represented beginning 

and middle portions of auditorily identified infant vocalizations, where amplitude was high, phonation was 

relatively normal and low in noise, and where overlapping sounds were minimal to nil.  

Additional analysis of the 1202 vocalizations was used to evaluate the automated results against 

auditory judgments made by the human transcriber on five of the acoustic parameters (VC, CS, SE, SQ, GW). 

In each case the observer located vocalizations by referencing the labels provided by the algorithm, ignored the 

vocalizations whose labels indicated they were cries or vegetative sounds, had been produced by another 

speaker, had failed to meet the duration criteria, or were not SVIs, and then coded the remaining SVIs in terms 

of the five designated parameters. The algorithm precluded the possibility that an SVI coded as either SQ or 

GW could also be coded as CS. Also an SVI could not be coded as both SQ and GW.  

In each case, prior research has addressed characteristics of  infant/child vocalizations that are closely 

related to these five parameters. In fact they had been selected and designed as initial attempts to implement 

acoustic tracking for key characteristics of infant/child vocalization. The goal of this aspect of the reliability 

evaluation, then, was to assess the degree to which  the automated acoustic feature classifications were reliably 

related to intuitively-based auditory classifications that are in common use in research on infant vocal 
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development. The other features (LT, HF and WB) were also selected as being related to features of child 

vocalizations, but they have not been the focus of prior auditory judgments by human transcribers to our 

knowledge, and were not subjected to such judgments here.  

VC reliability (for the data see  Table S8). For VC the human listener judgments were based on whether 

each labeled SVI interval was predominantly voiced.  Because such a large proportion of SVIs were VCs, the 

measure of VC per speech-related child utterance (SCU) can be thought of as a reliable indicator of the degree 

of within-SCU organization, a very rough indicator of the degree of syllabic-like organization within key child 

breath groups. 

Acoustic 

parameter

Session level 

correlation between 

human listener and 

machine 

classifications

Proportion 

correct machine 

classifications 

with human 

listener as gold 

standard

Cohen's 

kappa for 

human

listener vs. 

machine 

classification

Chi-square 

probability 

of Cohen’s kappa

VC 0.99 0.99 0.78 <.0001

CS 0.52 0.65 0.21 <.0001

SE 0.87 0.82 0.64 <.0001

SQ 0.46 0.91 0.25 <.0001

GW 0.72 0.9 0.48 <.0001

 

Table S8. Reliability results for 5 of the 12 acoustic parameters (those that could be judged auditorily in 

accord with procedures of prior research in infant/child vocalization). In column one, session-level agreement is 

recorded across the 16 five-minute samples (8 typically developing, 4 autistic, 4 language-delayed), represented 

by the correlation between the number of positive judgments made for each of the 16 samples by the human 

listener (transcriber) for each parameter and the number of positive judgments on that parameter made by the 

machine algorithm for the same 16 samples. The remaining columns pertain to two-by-two classification tables 

(for example, VC vs. not VC, for human listener vs. machine classification, where human listener is taken as the 

gold standard). Proportions correct are high but misleading because of cell imbalances. Cohen’s kappa corrects 

for these imbalances of distributions. The chi-square probability provides a measure of the significance of 

agreement between the auditory and automated classifications whenever kappa is positive (78). Even relatively 

low levels of agreement (as indicated by kappa values) between human listener and machine recognition appear 

to be capable of providing important measures of the acoustic organization of infant and child vocalizations, as 

indicated in our results, perhaps due to the huge sample size we analyzed compared with sample sizes in prior 

research on vocal development. See Supporting text for further details on reliability analysis procedures and 

results. 
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CS reliability (see Table S8).  Both auditory and machine judgments categorized only the first detected 

syllable of each SVI as CS or not CS. The auditory procedure was similar to that employed routinely in 

identification of canonical babbling in infancy (79, 80), with assignment of the label to all canonical syllables of 

CV or CCV shape regardless of the nature of perceived consonant-like or vowel-like components of the 

syllables. The machine algorithm’s hits on CS (true positive CS) were 1.3 times more frequent than false 

positives, but false negatives were 1.6 times more frequent than hits, indicating that the machine algorithm 

tended to miss many auditorily perceived instances of canonical syllables. Since the measure analyzed in the 

results of our study is the ratio of CS judgments (for SVIs) to SCUs, the value represents a rough indicator of (a 

lower bound on) the number of canonical syllables per breath group. 

SE reliability (see Table S8).  The SE auditory judgments were made on the basis of perceived voice 

quality. For each of the 16 samples, the judge first listened to enough utterances to gauge each  infant or child’s 

normal voice quality at  their habitual pitch level (81), in the middle of stressed syllable nuclei. SVIs with 

substantial perceived roughness, harshness or noisiness (including substantial breathiness) (82), were judged 

positive on SE, while SVIs that were dominated by normal voice relatively free of noise were judged 

negatively. It is important to emphasize that the judgments were made with a “low threshold”: The intent was to 

include in the SE category SVIs that showed spectral aperiodicity of a sort that would be expected to occur 

regularly in the utterances (breath groups) of normal speech. The low threshold yielded many more judgments 

of SE based on rough or harsh voice than of GW based on rough or harsh voice, where the criterion threshold of 

roughness was decidedly higher. The algorithm performed much better than chance in terms of agreement with 

the human listener, and yielded a measure (ratio of SVIs with SE to SCUs) of the degree to which utterance-

level organization showed normal vocal quality variability.  

SQ reliability (see Table S8).  For SQ the machine algorithm targeted SVIs with average pitch of 600 

Hz or higher. The auditory “squeal” judgments, on the other hand, were based on the common laboratory 

listening method which relies on an intuitive pitch criterion. In accord with the criterion, SVIs that were 

perceived as having a salient period that was above the habitual pitch range of the infant/child were categorized 

by the listener as SQ.  The auditory criterion yielded a 3.6 times as many SQ judgments as the machine 

algorithm. Still, hits outnumbered false positives in a ratio of 1.8. 

GW reliability (see Table S8). The machine algorithm categorized SVIs with low pitch (average 250 Hz 

or lower) as GW. As with SQ, the listener judgments were based on the common laboratory criterion: Any SVI 

that had a salient pitch characteristic lower than the individual’s habitual pitch and also any SVI that had 

especially harsh or rough voice quality with pitch in the mid or low range was categorized as GW. Subharmonic 

energies appear to be particularly effective in inspiring listeners to apply a growl label to infant sounds (83). 

Note that the auditory criterion for harsh voice quality was higher for GW than SE. The judgment of GW was 
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made based on harshness if and only if the utterance was perceived as being out of the range of normal voice 

quality harshness in conversational speech.  

SUPPORTING RESULTS 

Mean values across the 12 parameters for each of the three child groups  

Figure S8 supplies the mean raw values for presence of each parameter in the recordings, that is, the 

mean number of occurrences of SVIs designated as “plus” for each of the 12 parameters for each recording. 

Here there is no normalization for volubility or length of recording. Because of the lack of normalization, these 

values were not utilized in comparing groups statistically, and are provided only to illustrate raw amounts of 

usage for the various parameters. 

 

Figure S8. The average number of SVIs classified as “plus” for each of the 12 acoustic parameters for 

each recording (typically developing sample N = 802, autism sample N = 351, language delayed sample N 

= 333). Note the wide range of values. Also note similarities in the pattern of values for the 12 parameters 

across groups. The normalized values in Figure S9 adjust for differences across children in volubility (rate of 

vocalization) and for differences in length of recordings. 

  In Figure S9, the data are provided on the ratio scores (SVI/SCU) for each parameter. These values 

suggest notable group differences. ANOVA with Posthoc Tukey’s t comparisons illustrating that indeed the 

groups differed robustly on several parameters, and especially that the typically developing sample tended to 

differ from the autism sample. 
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Figure S9: Mean usage by child group of the 12 acoustic parameters as determined by the automated 

analysis, normalized for volubility and recording length by representing usage in terms of the ratio of 
SVIs to SCUs. Typically developing and autism samples differed statistically reliably on SVI/SCU ratios for 9 

of the 12 parameters, providing an initial indication of the potential of the automated acoustic analysis for group 

differentiation. Typically developing and language delayed samples differed reliably on four parameters. 

Figure S10 provides further evidence of group discriminability. Here the scores for each of the 12 

parameters were normalized within one-month age groupings, correcting for the fact that the samples were not 

distributed evenly across ages for the three groups. See Figure 1 in the main text or Table S3 for age differences 

across groups. The age normalization is an important step prior to discriminant analysis (see above Statistical 

analysis summary). 
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Figure S10. Group comparisons based on means for each child group on the standardized scores (i.e., z-
scores) for the 12 acoustic parameters. The z-scores were computed for the typically developing group at the 

recording level by first determining means and SDs at each month of age (windows four-months wide with two 

months of overlap). These means and SDs for the typically developing sample were used to compute z-scores 

for all three groups within each of the age ranges at the recording level. Then mean z-scores were computed at 

the child level (across recordings for each child).These z-scores were entered into LDA for modeling group 

discrimination. The results in Figure S10 illustrate that the most prominent differences among groups were on 

parameters of the rhythmic/syllabicity grouping (VC CS and SE) along with the duration parameters (except L). 

Significance levels are indicated in the same ways as in Figure S9. The z-score means for the typically 

developing group in Figure S10 are always near zero because the typically developing group was the reference 

group with a mean of 0 and SD of 1 in the computational procedure. The z-score means are not exactly zero for 

the typically developing group because the z-scores were first established at the recording level, and then 

averaged across child (with children differing in numbers of recordings). 

Correlational results indicating empirical and theoretical organization of the parameters   

The 12 parameters were grouped for the analyses a priori in part in accord with theoretical 

considerations and research in infant vocalizations that have been discussed above. However, the grouping was 

also developed to reflect the results of correlations (and see below, Principal components analysis indicating 
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empirical and theoretical organization of the parameters) conducted on the recorded data to provide an 

empirical assessment of the associations among the parameters and to help support interpretation of the results. 

Tables 9a-f provide the correlational results and levels of significance for each parameter, with panels broken 

down by child group. In addition the tables show the correlation of each of the 12 parameters with age of 

children. 

a. Typically developing sample, correlations             

Age VC CS SE SQ LT HF GW WB S M L XL 

VC 0.68 

      

            

CS 0.63 0.79 

     

            

SE 0.51 0.65 0.62 

    

            

SQ -0.20 -0.23 -0.29 -0.15 

   

            

LT 0.11 0.14 0.18 0.50 0.08 

  

            

HF -0.14 -0.23 -0.17 0.15 0.50 0.49 

 

            

GW 0.21 0.45 0.18 0.37 -0.16 0.00 -0.21             

WB 0.46 0.63 0.51 0.44 -0.22 0.12 -0.25 0.67           

S 0.44 0.78 0.74 0.52 -0.02 0.21 -0.10 0.51 0.66         

M 0.68 0.75 0.76 0.61 -0.30 0.13 -0.15 0.20 0.36 0.42       

L 0.25 0.24 -0.10 0.09 -0.21 -0.04 -0.11 -0.08 -0.06 -0.33 0.20     

XL -0.20 -0.15 -0.49 -0.24 -0.07 -0.17 -0.08 -0.15 -0.23 -0.52 -0.36 0.62   

b. Typically developing group, statistical significance levels             

VC 0.0000 

      

            

CS 0.0000 0.0000 

     

            

SE 0.0000 0.0000 0.0000 

    

            

SQ 0.0000 0.0000 0.0000 0.0000 

   

            

LT 0.0025 0.0001 0.0000 0.0000 0.0178 

  

            

HF 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

 

            

GW 0.0000 0.0000 0.0000 0.0000 0.0000 0.9007 0.0000             

WB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000           

S 0.0000 0.0000 0.0000 0.0000 0.6598 0.0000 0.0062 0.0000 0.0000         

M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000       

L 0.0000 0.0000 0.0031 0.0114 0.0000 0.3004 0.0018 0.0178 0.0702 0.0000 0.0000     

XL 0.0000 0.0000 0.0000 0.0000 0.0354 0.0000 0.0284 0.0000 0.0000 0.0000 0.0000 0.0000   

Table S9a-b. (a) Correlations for typically developing sample and (b) statistical significance levels. 

Color coding for groupings of the acoustic parameters correspond to Figure 2a in the main text and Table S5: 

blue = rhythmic/syllabification (RhSy), green = spectral tilt/high pitch (LtHp), violet = bandwidth/low pitch 

(BwLp), peach = duration (Dur). Notice 6 correlations of acoustic parameters with age are > 0.4, and all 

correlations with age are statistically significant. Boldface indicates correlations > ±0.4. Correlations between 

pairs of the 12 acoustic parameters (that is, correlations not involving age) showed notable similarities for all 

three child groups, and these similarities tended to support the theoretical groupings of the parameters. The 

correlations among members of each of the four a priori parameter groupings are displayed in the tables with 
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background colors corresponding to the groupings. Note that all correlations within the blue parameter 

grouping, RhSy (VC, CS, SE), are > 0.6, and several within the other color-coded groupings are also high. All 

three child groups showed correlations > ±0.4 (a) for all three pairings of parameters of the rhythmic/syllabicity 

grouping (VC with SE, CS with SE, VC with SE), (b) for two pairings of the spectral tilt/high pitch grouping 

(SQ with HF, HF with LT), (c) for the single pairing of the bandwidth/low pitch grouping (GW with WB), and 

(d) for at least 3 of the 6 pairings of the duration grouping.  

 
Table S9c-d. (c) Correlations for language delayed sample and (b) statistical significance levels. Color 

coding for groupings of the acoustic parameters correspond to Figure 2a in the main text and Table S5: blue = 

rhythmic/syllabification (RhSy), green = spectral tilt/high pitch (LtHp), violet = bandwidth/low pitch (BwLp), 

peach = duration (Dur). Boldface indicates correlations > ±0.4. Notice 5 correlations of acoustic parameters 

with age are > ±0.4, and, as in the case of the typically developing sample, all correlations with age are 

statistically significant. Also note that, as in the typically developing sample, all correlations within the blue 

c. Language delayed sample, correlations             

  Age VC CS SE SQ LT HF GW WB S M L XL 

VC 0.52                         

CS 0.56 0.75                       

SE 0.37 0.64 0.63                     

SQ -0.01 0.11 -0.15 0.16                   

LT 0.15 0.26 0.27 0.65 0.16                 

HF -0.10 -0.04 -0.03 0.36 0.49 0.52               

GW 0.11 0.33 0.13 0.34 -0.03 0.18 -0.03             

WB 0.28 0.39 0.35 0.28 -0.16 0.16 -0.13 0.73           

S 0.46 0.81 0.74 0.56 0.17 0.31 0.02 0.48 0.53         

M 0.53 0.64 0.79 0.61 -0.10 0.21 0.03 0.14 0.26 0.43       

L -0.15 -0.13 -0.42 -0.19 -0.05 -0.13 -0.06 -0.43 -0.41 -0.60 -0.22     

XL -0.49 -0.45 -0.78 -0.52 0.01 -0.26 -0.05 -0.27 -0.40 -0.65 -0.75 0.65   

d. Language delayed sample, statistical significance levels             

  Age VC CS SE SQ LT HF GW WB S M L XL 

VC 0.0000                         

CS 0.0000 0.0000                       

SE 0.0000 0.0000 0.0000                     

SQ 0.8391 0.0541 0.0066 0.0035                   

LT 0.0073 0.0000 0.0000 0.0000 0.0043                 

HF 0.0588 0.4221 0.5508 0.0000 0.0000 0.0000               

GW 0.0431 0.0000 0.0203 0.0000 0.6488 0.0010 0.5718             

WB 0.0000 0.0000 0.0000 0.0000 0.0031 0.0038 0.0154 0.0000           

S 0.0000 0.0000 0.0000 0.0000 0.0021 0.0000 0.7179 0.0000 0.0000         

M 0.0000 0.0000 0.0000 0.0000 0.0747 0.0001 0.5790 0.0099 0.0000 0.0000       

L 0.0064 0.0142 0.0000 0.0004 0.3252 0.0157 0.2555 0.0000 0.0000 0.0000 0.0000     

XL 0.0000 0.0000 0.0000 0.0000 0.8465 0.0000 0.3653 0.0000 0.0000 0.0000 0.0000 0.0000   
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parameter grouping, RhSy (VC, CS, SE), are > 0.6, and several within the other color-coded groupings are also 

high.  

 

e. Autism sample, correlations 

      c Age VC CS SE SQ LT HF GW WB S M L XL 

VC 0.13 

            CS 0.09 0.85 

           SE 0.08 0.72 0.71 

          SQ -0.09 -0.15 -0.29 0.13 

         LT 0.19 0.21 0.21 0.56 0.15 

        HF -0.04 -0.05 -0.09 0.34 0.50 0.57 

       GW 0.00 0.53 0.41 0.60 0.01 0.38 0.29 

      WB 0.17 0.64 0.62 0.50 -0.11 0.29 0.07 0.67 

     S 0.05 0.84 0.83 0.71 -0.07 0.32 0.10 0.71 0.80 

    M 0.12 0.70 0.77 0.72 -0.12 0.24 0.01 0.31 0.29 0.48 

   L 0.06 -0.42 -0.63 -0.53 0.04 -0.31 -0.14 -0.61 -0.60 -0.77 -0.33 

  XL -0.04 -0.60 -0.80 -0.73 0.01 -0.35 -0.15 -0.56 -0.56 -0.75 -0.76 0.73 

 f. Autism sample, statistical significance levels 

      

 

Age VC CS SE SQ LT HF GW WB S M L XL 

VC 0.0167 

            CS 0.0941 0.0000 

           SE 0.1320 0.0000 0.0000 

          SQ 0.0960 0.0048 0.0000 0.0150 

         LT 0.0003 0.0001 0.0001 0.0000 0.0052 

        HF 0.4514 0.3584 0.1021 0.0000 0.0000 0.0000 

       GW 0.9453 0.0000 0.0000 0.0000 0.9210 0.0000 0.0000 

      WB 0.0017 0.0000 0.0000 0.0000 0.0334 0.0000 0.1639 0.0000 

     S 0.3466 0.0000 0.0000 0.0000 0.1670 0.0000 0.0676 0.0000 0.0000 

    M 0.0192 0.0000 0.0000 0.0000 0.0204 0.0000 0.8728 0.0000 0.0000 0.0000 

   L 0.2442 0.0000 0.0000 0.0000 0.4305 0.0000 0.0112 0.0000 0.0000 0.0000 0.0000 

  XL 0.4512 0.0000 0.0000 0.0000 0.7926 0.0000 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000 

  
Table S9e-f. (e) Correlations for autism sample and (f) statistical significance levels. Color coding for 

groupings of the acoustic parameters correspond to Figure 2a in the main text and Table S5: blue = 

rhythmic/syllabification (RhSy), green = spectral tilt/high pitch (LtHp), violet = bandwidth/low pitch (BwLp), 

peach = duration (Dur). Boldface indicates correlations > ±0.4. As with the other child groups, all three 

correlations between parameters within the blue parameter grouping (VC, CS, SE) are > 0.6, and several within 

the other color-coded groupings are also high. However, in stark contrast to the other child groups, no 

correlations of acoustic parameters with age are > ±0.2 (first column), and statistical significance levels are 

much lower for the autism sample, indicating that children in the autism sample did not show age progression 

with the parameters to the extent  the other groups did. Leaving aside the 12 correlations with age and the 13 

correlations among parameters within the four theoretical groupings, there are 53 additional correlations 

displayed in each of the  Tables S9a, S9c and S9e. Here the autistic sample showed 11 correlations above the 
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> ±0.4 criterion level (indicated in red bold italic font), that were not above the criterion in the typically 

developing group and nine that were not above the criterion in the language delay group. We interpret these 

uniquely high correlations among acoustic parameters (outside the four a priori parameter groupings) in the 

autism sample (especially given their low correlations of the acoustic parameters with age) as indicators that the 

acoustics of vocalization is organized differently in the autism group than in the other groups. 

 

MLR analysis on the acoustic parameter groupings 

 The same analysis that was performed for all 12 parameters in the main text Fig. 2b, was also conducted 

on the four a priori groupings of the 12 parameters, and these analyses are displayed in Figure S11a-d. See 

caption for explanation.  

 

Figure S11: MLR comparisons of the typically developing and autism samples for the four a priori groupings 

of 12 acoustic parameters: (a) rhythm/syllabicity (RhSy); (b) low spectral tilt/high pitch (LtHp); (c) high 

bandwidth/low pitch (BwLp); (d) duration of SVIs (DUR). The MLRs show strong group differentiation in 

panels (a),  (b), and (d), the autism sample having lower predicted ages than the typically developing sample, 

and in panels (a) and (d),  the autism sample having lower correlations with age. The high bandwidth/low pitch 

grouping (panel c) shows little group differentiation. 
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Principal components analysis indicating empirical and theoretical organization of the parameters 

 Principal components analysis (PCA) for the three child groups in Table S10 and Figure S12a-c 

provided empirical support for the conceptual organization of the infrastructural acoustic parameter system (see 

above, The 12 acoustic parameters, and Step 6: Automated acoustic feature analysis). The principal 

components that emerged, especially in the typically developing sample (see blue shaded correlations), were 

highly associated with the a priori conceptual groupings (see color coded left column, Acoustic parameters).  

 Typically developing   Language delayed   Autism 

Acoustic 

parameters 
PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

VC 0.78 0.51 0.09 -0.05   0.81 0.32 0.04 0.05   0.49 0.74 -0.04 -0.10 

CS 0.88 0.20 -0.30 -0.07   0.92 0.07 -0.08 -0.29   0.49 0.80 -0.04 -0.21 

SE 0.71 0.36 0.07 0.39   0.75 0.28 0.46 0.10   0.39 0.74 0.41 0.15 

SQ -0.40 -0.03 -0.23 0.57   -0.12 -0.10 0.73 -0.20   -0.05 -0.06 0.14 0.96 

LT 0.30 0.05 0.02 0.77   0.37 0.24 0.67 0.17   0.19 0.18 0.91 -0.02 

HF -0.12 -0.19 -0.06 0.87   0.01 -0.10 0.88 -0.02   0.09 -0.05 0.75 0.50 

GW 0.05 0.91 -0.02 -0.08   0.07 0.92 0.04 -0.15   0.79 0.17 0.30 0.04 

WB 0.34 0.82 -0.08 -0.09   0.23 0.84 -0.14 -0.19   0.85 0.22 0.07 -0.10 

S 0.51 0.62 -0.44 0.07   0.62 0.47 0.14 -0.42   0.83 0.50 0.06 -0.01 

M 0.91 0.07 -0.01 -0.08   0.88 -0.03 -0.05 -0.15   0.06 0.95 0.09 -0.06 

L 0.20 -0.08 0.91 -0.06   -0.15 -0.32 -0.08 0.88   -0.79 -0.27 -0.11 -0.02 

XL -0.34 -0.05 0.85 -0.08   -0.69 -0.11 -0.03 0.62   -0.52 -0.71 -0.15 -0.06 

 

Table S10. Results of principal components analysis (PCA) on the 12 acoustic parameters within the 

three child groups. Colored shading (with colors corresponding to groups) is used to indicate the 

parameters that correlated at  > 0.55 with each component. Using this selection rule, simple structure can be 

observed in the typically developing sample, in that each principal component (PC) possessed a unique set 

of highly-correlated parameters, not shared with the other components. Further, the PCA organization in the 

case of the typically developing sample makes speech scientific sense, in that all the parameters 

conceptually associated with any of the first three a priori acoustic parameter groupings (indicated by the 

shading, light blue, green, violet) showed their highest correlations within that grouping. For the duration 

grouping (peach shading), the parameters split: High values on two of them (L and XL, i. e., long and extra 

long) characterized a separate PC (which might be termed “longer duration of SVIs than is normally found 

for syllables in mature languages”), while the other two parameters (S and M, i. e., short and medium 

duration) were associated with other PCs. The association of M with the rhythmic/syllabicity PC is 

predictable again on speech scientific grounds because M was defined by duration for SVIs within the 

“medium” range for syllables in mature languages. The language delay sample showed basically similar 

patterning to that of the typically developing sample except that S, along with a strong negatively correlated 

XL, were associated with the rhythmic/syllabicity PC for the language delayed sample. The XL parameter 

also showed a strong positive correlation with the duration PC in the language delayed analysis. The autism 

sample showed simple structure, like the typically developing sample, but the nature of the structure was 

notably different: i) The first PC in the autism analysis was not rhythm/syllabicity (blue); ii) the spectral 

tilt/high pitch a priori parameters (green) split up and correlated with two different PCs – a high SQ 

correlation pertained to one and a high LT and HF to another, and ii) the PC most related to the a priori 
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wide band/low pitch grouping (violet) included a very high negative correlation for L. As in the case of the 

correlational results, we interpret the different autism pattern in PCA as indicating that vocalization is 

organized differently in terms of the acoustic parameters for the autism sample than for the other child 

groups. A four-factor solution was forced on the autism sample to facilitate group comparison – for a cutoff 

eigenvalue of one, the typically developing and language delay groups produced a four-factor PC solution, 

but the autism group produced a three-factor solution. 

 

High vocal activity on the first a priori parameter grouping, RhSy (blue), and for its corresponding PC, 

can be interpreted as indicating syllable-like units are organized in the way mature syllables in speech are 

organized (72). The empirically determined PCA grouping (Table S10) includes VC (voicing typical of mature 

syllables), CS (canonical syllable formant transitions), and SE (spectral entropy typical of mature syllables), 

from the blue group, and M from the duration (peach) group (corresponding to duration in the medium range for 

mature syllables) (65). The second a priori parameter grouping, low spectral tilt/high pitch control (LtHp, 

green), includes two tilt parameters (LT, low tilt and HF, high frequency emphasis) and the SQ parameter 

(squeal, which indicates very high pitch, above the age-adjusted pitch range for children under four years of age 

or for mature syllables in speech). High correlations with these three parameters characterized a second PC  in 

the analysis for the typically developing sample. High vocal activity for acoustic parameters in the second 

grouping (LtHp) suggests a vocal pattern found commonly in infants and children at very young ages, namely, 

high pitch along with high frequency emphasis in the spectrum (68). High vocal activity in the third grouping 

(BwLp), wide bandwidth (of first and second formants)/ low pitch (lower than is typical in mature speech) 

control, can similarly be taken to indicate a pattern often seen in playful vocalization of infancy and very young 

childhood. WB (wide band) and GW (growl, characterized by low pitch) were seen to have high values on a 

third PC, along with S (short duration) (69, 70, 68, 72).  The final PC was associated in the typically developing 

sample with long and extra-long durations (SVIs longer than syllables in typical mature speech), again a pattern 

often found in very young children (65, 72).  

The PCA results thus indicate that the 12 acoustic parameters pertain to relatively coherent groupings 

that make sense in terms of infrastructural needs for speech development. The most important grouping in terms 

of characterizing progression in development (at least in this implementation of the parameters) appears to have 

been the first one, associated with well-formed syllabification and rhythm (see below and main text, Results). 

Furthermore the rhythm/syllabicity grouping appears to have provided the most potent basis for differentiation 

of the child groups. A strong indication that the rhythm/syllabicity grouping was particularly involved can be 

seen in Figures S9 and S10, where the largest differences between the autism and typically developing samples 

occurred on the four key parameters (VC, CS, SE and M) of the first and predominant PC in the typically 

developing group.  

The same results reported in Table S10 are displayed graphically in Figures S12a-c. 
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Figure S12a. PCA results for the typically developing sample at the recording level. A four-factor solution 

is evident (eigenvalue cutoff  = 1), holding much in common with the theoretical groupings based on the 

infrastructural model of vocal development. 

 

Figure S12b. PCA results for the language delay sample at the recording level. As with the typically 

developing sample, a four-factor solution is evident (eigenvalue cutoff = 1), holding much in common 

with the theoretical groupings based on the infrastructural model of vocal development. 
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Figure S12c. PCA results for the autism sample at the recording level. The structure of the PC 

solution is different than in the other child groups. A four-factor solution was forced. The RhSy group is 

evident, but as the second PC.  

 

Figure S13 compares mean z-scores for the three child groups on the four PCs of the typically 

developing sample. The figure indicates that the typically developing group used vocalization with the 

characteristics of the first PC, RhSy, much more often than the other child groups (note negative values 

on the z-scores for the other groups), suggesting that their vocalizations were more syllabically well 

formed than in the other groups. At the same time, the autism and language delay samples showed higher 

usage than the typically developing sample on the two PCs associated with pitch and spectral 

characteristics beyond the range that is typically found in speech. High usage of vocalizations with the 

acoustic characteristics of LtHp and BwLp appear to be indicative of relative immaturity of the vocal 

system (72).  The last PC from the typically developing group (Duration) showed no significant group 

differences. 

The group discrimination results in Figure S13 were highly statistically significant in several 

cases, but especially for the RhSy parameters, as can be seen in the figure. MANOVA predicting child 

group from the PCs of the typically developing sample showed major differences across the PCs. The 

RhSy PC accounted for over 21.9% of variance (based on the adjusted R
2
) in group discrimination, while 

the three other PCs combined accounted for only about half that much (PC2 = 6.8, PC3 = 3.6 and PC4 = 

1.4%). Thus the results suggest strongly that the overwhelming factor in determining group discrimination 

through the automated acoustic analysis of these infrastructural parameters was the extent to which 

children in the groups controlled well-formed rhythm/syllabification. 
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Figure S13. Mean standardized scores (z) for four principal components compared across the 

three child groups. Scores were computed based on the PCA for the typically developing sample and 

applied to all three groups. The scores illustrate that the rhythm/syllabicity (RhSy) grouping of 

parameters played a predominant role in differentiation of child groups. The typically developing 

sample showed higher usage of RhSy than the other groups, but lower usage on principal components 

associated with pitch and spectral features (LtHp, BwLp) that are unusual in mature speech. 

 

To summarize the PCA results, they:  

1. provide hopeful indications that the 12 acoustic parameters are indicative of infrastructural 

characteristics of speech organized into four primary groupings; and 

2. suggest that parameters of syllabification and rhythm offer the most important basis for both 

developmental monitoring and for group differentiation among the parameters as they are currently 

implemented. 

 

Individual children and subgroups of particular interest in the group discrimination analyses 

In this section we explore results for certain children and subgroups of special interest. Figure S14 shows data 
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from the typical vs autism modeling configuration. The analysis with all children in the two groups can be compared 

with those from subsets of interest within the autism sample. For example, five children had been diagnosed 

originally with Pervasive Developmental Disorder (PDD) rather than with classic autism, because they were below 

the standard cutoff age (36 months) for diagnosis. One might have imagined these children would have been 

particularly hard for the modeling to detect as pertaining to the autism sample, but in fact all 5 showed posterior 

probabilities of autism beyond the 95% CI for the typically developing group (see second pair of bars from the left in 

Figure S14). 

Fifteen children in the autism sample had been labeled as “echolalic”, a condition common in autism, 

characterized by frequent repetitions of speech heard from the environment. These children might have been expected 

to be hard to detect as pertaining to the autism sample because they produce speech very frequently, and often it 

consists of well-formed syllables and other speech features found in typically developing children. The results based 

on the automated acoustic analysis for 13 of these children were, however, quite characteristic of the autism sample 

(see second pair of bars in the figure). Two of the children with echolalia, however, whose posterior probabilities are 

represented as a circle and a pentagon in the figure did indeed show very low probabilities, indicating that the 

automated procedure did not distinguish them from typically developing children. 

In the MLR analysis of Figure S11c, there is an outlier (represented by very high points on the y-axis), also 

seen in Figure 2b (main text). This child with autism showed very high values (beyond the range for any child in any 

of the three groups) for the WB parameter from the BwLp grouping (reflected in Figure S11c, and perhaps as a result, 

on the 12 parameters together in Figure 2b). In fact the child showed an unexpected profile (clearly different from the 

autism group as a whole) with parameter usage that was near the end of distributions for all recordings from the three 

child groups on many of the 12 parameters: His recordings were high on WB, S, and CS, and very low on L, XL and 

SQ. He also showed relatively high values on GW, the second parameter of the BwLp grouping portrayed in Figure 

S11c. A  non-automated acoustic evaluation (visual inspection) was conducted on a sampling of his recordings to 

determine if the high values for BwLp parameters might have resulted from an algorithm artifact associated, for 

example, with pitch-doubling. No artifact appeared to be involved. The SVIs labeled as WB and GW were indeed 

numerous in the recordings, and the acoustic characteristics of the examined SVIs did not show evidence of 

subharmonics or other spectral features that might lead to pitch-doubling in the automated analysis. In any case, it 

might have been imagined that this child (with his highly individual profile of parameter usage) would have been 

hard for the automated approach to detect as pertaining to the autism sample, but in fact his recordings showed a very 

high posterior probability ( > 0.8) of autism (based on LDA, see red star in Figure S14). 
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Figure S14.  Results on children of special interest in group discrimination based on the modelling configuration 

Typical vs Autism. For all data in the figure, PPs were first subjected to a logit transformation, then means and 

CIs were computed, after which these were converted back to PPs for display; this is the same computational 

method used for Figure 4b (main text); without the logit transformation, the distribution of PPs is skewed with 

high density at high and low values; logit transformation produces a more normal distribution and allows more 

meaningful portrayal of means and CIs. The first pair of bars compares the entire typically developing (N = 106) 

and autism (N = 77) samples. Other pairs of bars show the  typically developing sample against subsets from the 

autism sample. The second pair of bars includes data from 5 children in the autism sample originally diagnosed 

with pervasive developmental disorder (PDD-NOS) rather than classic autism, because they were too young at the 

time of diagnosis to meet requirements of classic autism. The PDD group was robustly discriminated by one-way 

ANOVA from the typically developing group (p<10
-5

). The third pair includes 13 children with autism who were 

reported to have been diagnosed with echolalia. These 13 were also dramatically different from the typical sample 

(p<10
-12

).  Data for two children who were reported to have echolalia (circle and pentagon) are plotted separately 

as outliers, showing very low posterior probabilities (<0.01) of autism.  A final child’s data (star) are also plotted 

separately – he was the outlier in Figures S11c showing extremely high values on the BwLp parameter grouping 

(based on MLR) and in Figure 2b of the Main Text for all 12 parameters. Yet in spite of odd scores on BwLp (and 

outlying values on other parameters), his PP of autism was found to be very high (0.82, based on LDA). 

  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

All Children PDD-NOS Echolalia

P
o

st
e

ri
o

r 
p

ro
b

a
b

il
it

y
 

o
f 

A
u

ti
sm

 p
lu

s 
9

5
%

 C
I:

 

Ty
p

ic
a

l v
s.

 A
u

ti
sm

 c
o

n
fi

g
u

ra
ti

o
n

Autism outlier on BwLp 

(see Figure  S12c)Autism outlier 2 among Echolalic subgroup

Autism outlier 1 among Echolalia subgroup

Typically developing

Autism



44 

 

 

 

  Similar comparisons to those of Figure S14 are provided for the modeling configuration typical vs 

autism plus language delay in Figure S15. This configuration allows us to compare the extent to which the 

automated system differentiated children with (autism, language delay) and without (typically developing) 

language-related disorders for certain subsamples of the data. The PDD and echolalia samples show results 

basically similar to those of Figure S14, with highly significant differentiation from the typically developing 

sample (p < 10
-5

). The 49 children in the language delay sample were also sharply discriminated from the 

typically developing sample, as illustrated in the figure (p < 10
-12

).  The stars in Figure S15 provide data on four 

of the children from the Phase I language delay sample who were designated at the time of the speech-language 

evaluation in Boulder as having “autistic characteristics”.  All of them showed very high probabilities ( > 0.62, 

and well outside the 95% confidence interval for the typically developing sample, as portrayed in Figure S15) in 

the typical vs autism plus language delay configuration. Thus these children were designated very reliably by 

the automated procedure as not being typically developing. However, of equal interest is the fact that in the 

autism vs. typical plus language delayed configuration of modeling (not portrayed in Figures S14-15), the 

four children with “autistic characteristics” were also assigned very high PPs ( > 0.37, well outside the range of 

the 95% confidence interval for PPs of a combined group of the 106 typically developing children plus the 45 

language delayed children not designated as having autistic characteristics). Thus the automated procedure can 

be said to have assigned these four children very high probability of being autistic. Although we do not have 

direct contact with the families in most cases, we have been notified by the family that one of these four 

children designated as having “autistic characteristics” has recently been given a diagnosis of Asperger 

syndrome. 
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Figure S15. Results on children of special interest in the discrimination of child groups based on the modelling 

configuration Typical vs Autism plus Language delay. For computation method, see Figure S14. The first pair 

of bars provides a standard of comparison for typically developing (N = 106) and autism (N = 77) samples. The 

other pairs show outcomes for the  typically developing sample against subsets from the autism sample (red) or 

language delayed samples (orange). The second pair of bars includes data from the PDD group, indicating  the 

differentiation of the PDD group from the typically developing sample was highly reliable (p<10
-5

) in this 

modelling configuration. The same observation applies to the comparison of posterior probabilities of 13 

echolalic children to the probabilities for the typically developing sample (p< 10
-11

). The same two outliers from 

the echolalic group as in Figure S14 are displayed here (circle, pentagon), again with very low posterior 

probabilities for this modelling configuration. The fourth pair of bars compares the typically developing sample 

with the entire language delay sample for this modelling configuration, and illustrates very sharp discrimination 

by the automated analysis (p < 10
-12

 ). The fifth pair of bars provides data on six children from the language 

delay sample in Phase I who showed high scores ( > 100) on the PLS-4/REEL-3 when they were tested by our 

speech-language pathologist months after their independent diagnosis as language delayed. These children’s 

posterior probabilities were significantly higher than those of the typically developing sample (p < 0.02) as a 

group, but three of them had posterior probabilities within the typically developing range, suggesting (along 

with their high PLS/REEL scores) that they may have “caught up” with their typical peers from the point of 

diagnosis to the point of recording with our project. The gold stars represent four children from the language 

delayed sample who were designated at testing by our speech-language pathologist to have “autistic 

characteristics” even though none of them had to that point been diagnosed as autistic. As can be seen, all these 
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children were assigned very high posterior probabilities ( > 0.6). One of these four has since been given a 

formal diagnosis of Asperger syndrome, independently of the present study. The diamonds and triangles 

represent the mean posterior probabilities at two different points in time for two individuals who were first 

assigned to the language delayed sample in Phase I (and were recorded at a mean of 15 and 25 months of age, 

respectively) , but whose parents later responded to the national on-line recruitment in Phase II, at which time it 

was reported that their diagnoses had been changed from language delayed to autistic (and then they were 

recorded at a mean of 33 and 44 months of age, respectively). The darker colored diamond and triangle 

represent the posterior probabilities for the recordings made in Phase II, and the lighter colored ones in Phase I. 

Because of the diagnostic change, the recordings from these two children were not included in the modelling, 

and they were not among either the 49 language delayed children or the 77 autistic children considered in the 

Main Text or prior sections of the Supporting Information Appendix. The data show one of the children having 

PPs a little above the mean for the typically developing sample at both Phase I and Phase II points of recording, 

but the other showing a very high PP at the Phase II point only, after the autism diagnosis. 

Six children from the language-delayed sample in Phase I had achieved especially high mean language 

development scores (standard score > 100)  on the PLS4 and REEL3 (the most widely used measures of early 

vocal communication, (51, 52)), administered by the project speech-language pathologist. These scores were of 

course considerably higher than expected given that the children had been previously diagnosed with language 

delay. The PPs for these six children displayed in Figure S15, along with their high PLS/REEL scores, suggest 

half of these children may have “caught up” with their typically developing peers in at least some characteristics 

of vocal language from the time of the diagnosis to the time of the recordings, because half of them showed PPs 

within the 95% CI of the typically developing sample, while the others showed PPs > 0.5.  

There were two children originally involved in the Phase I language delay sample whose parents 

enrolled them about 20 months later through the national on-line method in the Phase II autism sample. In the 

interim their diagnoses had been changed by the independent professionals working with the children. Thus we 

had recordings on these two children at two different points in time, with differing diagnoses. We did not 

include these children’s data in the primary samples (they were not among either the 49 language delayed or 77 

autistic children considered in the Main Text or in earlier portions of the Supporting Information Appendix). 

However, their PPs were computed in special runs of LOOCV where their data were treated as the holdout 

samples for all six binary configurations of the three child groups. The results are presented as mean posterior 

probabilities for the configuration Typical vs. Autism plus Language delayed in Figure S15, and they show 

that Child 1 had somewhat ambiguous posterior probabilities at both Phase I and Phase II, only a little higher 

than the typically developing mean, while Child 2’s PPs changed from being in the typical range at Phase I to 

being in the autistic range at Phase II.  Equally pertinent are data from two modeling configurations not 

portrayed in Figure S15: a) Autism vs Typical and b) Autism vs. Typical plus Language delayed, where 

Child 1 showed posterior probabilities above the 95% CI for the typically developing sample at both Phase I 

and Phase II, while Child 2 fell narrowly below the typically developing means at Phase I, but showed very 

high posterior probabilities of autism (configuration a = 0.89, configuration b = 0.77) at Phase II.  
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To summarize the data on the special child cases and special subgroups: 

1. Children with an early diagnosis of PDD were robustly assigned PPs in the autistic range by the 

automated procedure. 

2. Children in the autism sample with a label of “echolalic” were robustly assigned PPs in the autistic 

range for 13 of 15 cases, but two were assigned PPs characteristic of typically developing children by 

the automated procedure. 

3. The child with autism who was the primary outlier in MLR for the BwLp parameter grouping  and who 

showed anomalous values on more than half the acoustic parameters was clearly classified as autistic by 

the LDA automated procedure. 

4. Half the children who had been assigned to the language delay sample based on independent clinical 

diagnosis but who showed high ( > 100) scores on language tests administered in our laboratories near 

the time of recordings were not identified as language-disordered by the automated procedure. 

5. Children from the language delay sample who were indicated to have “autistic characteristics” by our 

staff speech-language pathologist, were robustly identified as being not typically developing and as 

being autistic as opposed to either typically developing or language delayed by the automated 

procedures. 

6. Two special cases of children with independent professional diagnoses  that changed from language 

delay in Phase I to autism in Phase II showed inconsistent classification by the automated procedure at 

different Phases and in different configurations of group comparison. 

 

 

 

Figure S16. Correlation of posterior probability of autism with age of children in the typically 

developing vs. autism configuration.  Extremely low correlations of PPs with age (autism r = - 0.07, 

typically developing r = 0.11) suggest little if any role for age in the discriminability of groups by the 

automated procedure for these samples.  

The effect of age on group differentiation 

Addressing the possibility that group differentiation by the automated method for autistic and non-autistic 

children might be relatively poor at the youngest ages, we correlated PPs with age for the children with autism 
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compared with those from the typically developing sample. The results are displayed in Figure S16.  The results 

do not suggest any important role for age in the automated procedure’s differentiation of typically developing 

and autism samples  across the age range we have tested thus far. 

SUPPORTING BACKGROUND 

The problem of small sample sizes in developmental vocalization research 

The study of early vocal development and its role in language has a long history. Empirical research has 

required laboratory recordings of children along with laborious coding, transcription, and acoustic analysis with 

visual inspection and measurement. Consequently sample sizes have often been very small (for reviews of 

relevant literature see (72, 84, 85). Representativeness of samples recorded over a half-hour to an hour (the 

typical durations in the laboratory) has long been viewed skeptically. Recent data illustrate that developmental 

change cannot be appropriately characterized in the absence of  narrow-interval sampling (86).  

Vocal characteristics in autism 

 Pronovost and colleagues (87) provided the first systematic report based on longitudinal observations of 

14 children with autism, aged 5-15 years, but offered scarce quantification of their intriguing claims about 

anomalous voice characteristics in autism. Shriberg et al. (88) surveyed literature (including that of Pronovost 

and colleagues) that included commentaries or observations about prosodic characteristics of vocalizations in 

ASD. They found that all ten articles surveyed pointed to atypicality in the prosody of vocal affective 

expression, a pragmatic aspect of verbalization. Two years later an additional review (89) appeared, covering 

much of the same material, updating it, and reaching similar conclusions. 

A sample of 15 children with ASD, aged 3-5 years, matched on nonverbal intelligence and vocal 

language ability with 11 children diagnosed to have other developmental delays was studied by Sheinkopf et al. 

(90).  The research addressed vocalizations in these samples, video and audio recorded during administration of 

an interactive test of social and behavioral development. Auditory analysis of the recordings based on 

classification schemes in wide usage in infant vocalization research indicated that the ASD sample showed 

vocal anomalies related to pitch and voice quality in more than 20% of syllables in their utterances, more than 

twice as often as the delayed sample. More recent follow-ups based on the same recordings in laboratories of 

the first author of the present paper have scrutinized the vocalizations of both groups acoustically. Again 

notable differences have been found between the two groups in terms of vocal characteristics. Further acoustic 

work with these samples is continuing.  

Research in development of vocal acoustic characteristics  

Developmental acoustic changes occur in both prespeech vocalizations (babbling) and in speech (91-

93). Of primary interest here are developments that pertain to both speech and prespeech, and thus can be 
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monitored starting in the first months of life and followed across years. These can be termed “infrastructural” 

(or “infraphonological”) (72), because they manifest elements of vocal control required for any spoken 

language. For example, all languages use normal phonation (i.e., voicing) as a source of acoustic energy for the 

production of speech events. Normal phonation has acoustic consequences that can be monitored from the first 

months of life and contrasted with other types of phonation (68, 83, 94). In addition all languages involve 

supraglottal articulatory actions that filter or modulate the phonatory stream during speech events. These 

modulations are produced rhythmically, creating acoustically identifiable syllables as minimal rhythmic units in 

languages. Supraglottal modulations can also be monitored systematically from the first months of life (95). 

Finally, the syllable-producing articulatory modulations of speech entail characteristic cyclic durations. Thus, 

syllables tend to have durations within a fixed range, and this durational pattern can also be monitored starting 

from the first months of life (96).   

The degree of infant control over these infrastructural properties of speech (phonation, syllabicity, and 

duration of syllabic units) can be monitored without direct reference to the concrete phonological elements that 

constitute the mature system of speech segments, the phonemes. The lack of necessary reference to phonemes in 

the acoustic analysis we used is important because infants in the first months of life do not command phonemes 

at all in vocal production. Further, it is now widely believed by child phonologists that truly phonemic control 

in speech production is not achieved until at soonest the second year of life (80, 85). And when a truly 

phonemic system does begin to emerge, its contrastive elements are fewer and more variable in form than those 

of the mature system. So instead of beginning with phonemic development, infants begin life by building 

infrastructural capabilities such as phonatory control, along with the systematic articulatory movements that are 

required for syllables (97, 98). 

Parameter groupings a-c (Table S5) all include parameters that monitor phonatory action and its 

development – utterances with very high or very low pitch of course represent substantial variations in 

phonatory properties. These groupings were selected in part to reflect findings of research in infant vocal 

development, which has repeatedly reported an early three-way contrast (proposed to be the earliest voluntary 

vocal contrast of human infancy) among utterances that are described in the terminology of the field as vowel-

like sounds (or vocants), squeals, and growls (79, 99, 100). Vowel-like sounds include phonation produced in a 

mid-pitch range for the particular voice in question, squeals provide a high-pitched contrast with vowel-like 

sounds, and growls provide a low-pitched contrast with vowel-like sounds. Parameter grouping d was also 

selected to reflect a documented tendency for systematic change with age, in this case regarding durations of 

vocalizations (101). 

Because of the fact that our automated analysis was conducted on SVIs, roughly syllabic-like units, the 

parameters of grouping a (RhSy) plus the medium duration parameter appear to hang together. They appear to 
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provide a basis for monitoring the emergence of well-formed syllabification, because each of the four 

parameters monitors a property of well-formed syllables (voicing, canonical transitions, spectral entropy within 

the expected range for syllables, and duration typical of mature syllables). 

Automated acoustic analysis 

 The great bulk of research that has been conducted in infant vocalizations and child phonology has 

been based on auditory analyses, usually including phonetic transcription (102-104), although a number studies 

have included acoustic analysis as well (105, 106). Automated analysis of vocalizations in infancy and early 

childhood has been very rare. One reason is that early infant vocalizations do not contain phonemic elements, 

and consequently, the primary available methods of automatic speech recognition (which are very 

predominantly based on phonemic principles) are seemingly inapplicable.  

One important effort at automated categorization of acoustic features in infant vocalizations has focused 

on canonical syllables and related phenomena (107). The approach has been based primarily on automated 

evaluation of acoustic landmarks (108) associated with onsets of syllables and has targeted differentiation of 

infants and children with and without communication disorders. The work has achieved some success in 

identifying canonical syllables in infancy and in differentiating groups, and provides hope that automated 

methods can do much more in the future. In addition, another project centered at the Oregon Health and Science 

University is underway under funding from NIDCD to evaluate prosody in autism with automated tools and a 

preliminary report provides reason for optimism about the approach (109). 

From the standpoint of the goals of the present work, a critical limitation of the prior efforts (both of 

Fell and colleagues and of the  Oregon Health and Science University group) is that the approaches have not 

been applied directly to naturalistic recordings. Instead, the efforts either require that listeners precode data 

from recordings, locating utterances by visual/auditory inspection, or the utterances are the product of a specific 

laboratory/clinical elicitation task, where the target word or words are known for the speaker prior to automated 

analysis. Thus particular utterances deemed appropriate for analysis are preselected rather than being found by 

the automated analysis within naturally occurring vocal communication. These approaches do not have to 

differentiate babbling and speech from cries and vegetative sounds, vocalizations produced by other speakers, 

or other irrelevant noises. Precoding by human observers and conducting elicitation tasks with human 

experimenters in the laboratory or clinic are time consuming and costly (although the Oregon Health and 

Science University group is developing computer interactive elicitation procedures for some of its measures). 

The data analyzed in such approaches is not as naturalistic as the data analyzed here, and thus the method is 

subject to question with regard to representativeness of the child’s actual performance in communication. For 

the present goals, such precoding or elicitation would defeat the primary purpose – we seek to provide a fully 
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automated procedure, where all the steps of the analysis are included starting with a raw, naturalistically 

acquired acoustic waveform. 

The need for interdisciplinary cooperation in this research 

A key problem in establishing productive relations between engineering and vocal development for the 

purposes of automated acoustic analysis is to establish a common set of goals. In general, speech recognition 

engineers work from models that begin with mature phonemics as an organizing principle – thus, for example, 

Gaussian mixture models in current speech recognition software typically target individual phonemes (i.e., 

alphabetical level consonant or vowel segments, /t/ , /n/, /i/, etc.) or sequences of phonemes. In contrast, 

research in infant vocalizations has long rejected the idea that infants in the first months of life command 

phonemes at all, both on theoretical and empirical grounds. Further, across the first several years of life, 

phonemic control emerges in stages and degrees – there is no fixed point of phonemic onset. This perspective 

suggests that an optimal approach to acoustic modeling across the first years should target infrastructural 

properties of vocal development that show relatively continuous growth across several years. Hence the 

marriage established for the present work involved engineering to implement infrastructural properties (rather 

than phoneme-based models) in the form of 12 parameters that were designed on the basis of theoretical 

considerations current in research on infant vocalizations and young child phonology.  
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